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A technique for the robust demodulation of discrete FM signals in the

presence of additive noise is presented. Based upon least squares, the

proposed technique is shown to improve the accuracy of instantaneous

frequency estimation by 17 to 79% compared with the popular discrete

energy separation (DESA), smooth DESA and Hilbert transform-based

algorithms, e.g. noisy signals at low SNRs.

Introduction: Estimation of the instantaneous frequency has recently

regained attention in the speech processing community as researchers

look for alternatives to spectral magnitude-based models of the speech

signal. Among possible approaches to FM demodulation of discrete

signals with time-varying amplitude, one is to derive an expression for

the instantaneous frequency of the signal that eliminates the ampli-

tude. The advantage of this approach is that inaccuracies in amplitude

estimates then do not degrade the accuracy with which the instanta-

neous frequency can be estimated, as can occur in methods such as the

Hilbert transform [1]. The discrete energy separation algorithm

(DESA) [2] is one example of an expression that eliminates the

amplitude, which has been applied successfully to speech recognition

recently [3] and shown to outperform other FM demodulation

schemes for some applications [4, 5]. Unfortunately the performance

of DESA in FM demodulation degrades quite severely in the presence

of additive noise, detracting from its potential in such applications. In

this Letter, we examine how least squares methods can be applied to

an FM demodulation approach of this type to improve demodulation

performance in noise.

Derivation of differential ratio demodulation method: Among the

simplest means for eliminating the amplitude of a periodic signal for

the purposes of frequency estimation is that based on the observation

that for a continuous-time sinusoidal signal

xðtÞ ¼ A sinðot þ eÞ ð1Þ

with amplitude A and analogue frequency o, both assumed constant,

€xðtÞ ¼ �o2xðtÞ ð2Þ

Thus o can be estimated directly via the ratio of ẍ(t) to x(t) By contrast,

the DESA method eliminates the amplitude A through the relation-

ship [2]

CðxðtÞÞ ¼ _x2ðtÞ � xðtÞ€xðtÞ

¼ A2o2
ð3Þ

from which o can be estimated directly via the ratio of C(x
.
(t)) to

C(x(t)). The relationship in (2) is of course familiar from physics as part

of the solution to the wave equation, and has been identified for use in

instantaneous frequency estimation for some time [6]. If we now

examine this relationship for a discrete signal, x[n] by analogy with

(2) we have

d2½n� ¼ �ŷ2x½n� ð4Þ

where ŷ is the digital frequency estimate and d2[n], the second derivate

of x[n], is approximated here using a first-order central difference

d2½n� ¼ x½n� � 2x½n� 1� þ x½n� 2� ð5Þ

The digital frequency can thus be estimated using

ŷ2x½n� ¼ �d2½n� ¼ �x½n� þ 2x½n� 1� � x½n� 2� ð6Þ

We refer to this proposed frequency estimation technique as the

differential ratio method. The relationship between ŷ and the true

digital frequency y can be found by taking the z-transform of (6) and

substituting z¼ ej
y

,

ŷ2
¼ �ð1 � z�1Þ

2

jŷj2 ¼ 4 sin2 y
2

� �
ð7Þ

Hence, as a result of the approximation to differentiation, a warping of

y¼ 2arcsin (ŷ=2) needs to be applied to the estimate ŷ to obtain the true

frequency y for a clean signal x[n]. Computationally, the arcsin

transformation is not very attractive. Taylor series represent an alter-

native, however informal empirical work indicates that a very high order

is needed for frequencies close to ŷ¼p. For low frequencies where

ŷ’ y, the arcsin warping can be neglected altogether. A major draw-

back of the differential ratio method of frequency estimation is the

division by x[n] implied by (6), which besides creating problems when

x[n] is zero, produces large errors in frequency estimation in the

presence of noise.

Robustness enhancement of differential ratio demodulation method:

Here, we address this sensitivity to noise using a least squares

approach. Rewriting (5) in matrix-vector notation over a window of

length N,

d2 ’ �ax ð8Þ

where

d2 ¼

x½n� � 2x½n� 1� þ x½n� 2�

..

.

x½n� N þ 1� � 2x½n� N � þ x½n� N � 1�

2
64

3
75 ð9Þ

x ¼

x½n� 1�

..

.

x½n� N �

2
64

3
75 ð10Þ

and a¼ ŷ2. Then

jaj ¼ �½xTx��1xTd2 ð11Þ

where T denotes vector transpose. Note that xTx is a scalar, so no matrix

inversion is required. Thus a more robust frequency estimate than the

differential ratio technique can be obtained as

ŷLS ¼ 2arcsin

ffiffiffi
q

p

2

� �
ð12Þ

Note that in practice a is nearly always positive (always for SNR > 20 dB

and 99.5% of the time for SNR¼ 0 dB in our experiments), however jaj

can be used in place of a where required. In principle, a similar least

squares approach to that of (8)–(11) can be employed with the DESA

method, however informal empirical results for this approach were not

promising.

Evaluation: Since the main purpose of deriving a robust instanta-

neous frequency estimation technique is for FM demodulation, in this

Section we examine the performance of several estimation techniques

for the reference AM-FM signal used in [2],

s½n� ¼ 1 þ 0:5 cos
pn
50

� �� �
cos nyc þ 4 sin nym þ

p
4

� �� �
ð13Þ

where yc and ym are the carrier and message frequencies, respectively.

First, the least squares window length N of the least squares

differential ratio technique was varied for a range of different

message frequencies, in order to determine the length required for

accurate instantaneous frequency estimation, in terms of mean-

square error. The second experiment aimed to compare the differ-

ential ratio and least squares differential ratio with existing

approaches for noisy signals. Here the DESA [2], smooth DESA

[4] and Hilbert transform [1] algorithms were also implemented, and

all five algorithms were used to demodulate a noisy signal x[n]¼

s[n]þw[n], where w[n] is a normally distributed white noise process

and the parameter settings yc¼p=4, ym¼p=50, and N¼ 5 were

used. The Hilbert transform method was implemented with an FIR

filter of length 19, similarly to the method referred to as ‘short

HTSA’ in [4]. The frequency estimates from all algorithms were

lowpass filtered using a rectangular window of length 100, for

similar reasons to the smoothing approaches applied in [3]. These

frequency estimation measurements were repeated over different

SNRs, and the mean-square error from the true instantaneous

frequency was evaluated for each case, as shown in Fig. 1. For

each approach, mean and standard deviation normalisation was

applied to the frequency estimates and any phase difference from

the instantaneous frequency of the true signal in (13) was removed,

to permit fair comparison between them.
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