Original Research Article

A Class of S-STEP NON-LINEAR ITERATION SchEME BASED ON Projection Method for Gauss Method

R. Vigneswaran ${ }^{\text {a }} \mid$ S. Kajanthan ${ }^{\text {b }}$

Abstract

Various iteration schemes are proposed by various authors to solve nonlinear equations arising in the implementation of implicit Runge-Kutta methods. In this paper, a class of s-step non-linear scheme based on projection method is proposed to accelerate the convergence rate of those linear iteration schemes. In this scheme, sequence of numerical solutions is updated after each sub-step is completed. For 2-stage Gauss method, upper bound for the spectral radius of its iteration matrix was obtained in the left half complex plane. This result is extended to 3 -stage and 4 -stage Gauss methods by transforming the coefficient matrix and the iteration matrix to a block diagonal form. Finally, some numerical experiments are carried out to confirm the obtained theoretical results.

Keywords: Gauss method, implementation, projection method, rate of convergence, stiff systems

Author Affiliation
${ }^{\text {a D Department of Mathematics and Statistics, Faculty of Science, }}$ University of Jaffna, Sri Lanka.
${ }^{b}$ Department of Inter Disciplinary Studies, Faculty of Technology, University of Jaffna, Sri Lanka.
Correspondence
R.Vigneswaran, Department of Mathematics and Statistics, Faculty of Science, University of Jaffna, Sri Lanka.
Email: rvicky58@gmail.com

PUBLICATION HISTORY

Received: May 28, 2019
Accepted: June 15, 2019
ARTICLE ID: AMS-66

1. InTRODUCTION

Consider an initial value problem for stiff system of $n(\geq 1)$ ordinary differential equations

$$
\begin{equation*}
x^{\prime}=f(x(t)), \quad x\left(t_{0}\right)=x_{0}, \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

An s-stage implicit Runge-Kutta method computes an approximation x_{r+1} to the solution $x\left(t_{r+1}\right)$ at discrete point $t_{r+1}=t_{r}+h \quad$ by $\quad x_{r+1}=x_{r}+h \sum_{i=1}^{s} b_{i} f\left(y_{i}\right)$ where the internal approximations $y_{1}, y_{2}, \ldots, y_{s}$ satisfy $S n$ equations

$$
\begin{equation*}
y_{i}=x_{r}+h \sum_{j=1}^{s} a_{i j} f\left(y_{j}\right), i=1,2, \ldots, s \tag{2}
\end{equation*}
$$

and $A=\left[a_{i j}\right]$ is the real coefficient matrix of the Runge-Kutta method. Let

$$
Y=y_{1} \oplus y_{2} \oplus \cdots \oplus y_{s} \in \mathbb{R}^{s n}
$$

and let

Then the equations (2) written by $D(Y)=0$, where D is the approximation defect defined by

$$
\begin{equation*}
D(Y)=e \otimes x_{r}-Y+h\left(A \otimes I_{n}\right) F(Y) \tag{3}
\end{equation*}
$$

Where $e=(1,1, \ldots, 1)^{T}$ and $A \otimes I_{n}$ is the tensor product of the matrix A with $n \times n$ identity matrix I_{n} and, in general $A \otimes B=\left[a_{i j} B\right]$. This article deals with methods suitable for stiff systems so that the matrix A is not strictly lower triangular. There are two general approaches proposed by several authors to solve the system $D(Y)=0$. In one approach, a modified Newton scheme is used. Let
J be the Jacobian of f evaluated at some recent point x_{r}, updated infrequently. The modified Newton scheme evaluates $Y^{1}, Y^{2}, Y^{3}, \cdots$, to satisfy
$\left(I_{s n}-h A \otimes J\right)\left(Y^{m}-Y^{m-1}\right)=D\left(Y^{m-1}\right), \quad m=1,2, \ldots$. solved so that this scheme is still expensive. The other approach is to use schemes based directly on iterative procedures. In this type, several authors proposed several iteration schemes. A more general scheme was proposed by Cooper and Butcher [1]. This scheme sacrificing super linear convergence for reduced linear algebra cost. They consider the scheme

$$
F(Y)=f\left(y_{1}\right) \oplus f\left(y_{2}\right) \oplus \cdots \oplus f\left(y_{s}\right) \in \mathbb{R}^{s n} .
$$

$$
\begin{align*}
{\left[I_{s} \otimes\left(I_{n}-h \lambda J\right)\right] E^{m} } & =\left(B S^{-1} \otimes I_{n}\right) D\left(Y^{m-1}\right)+\left(L \otimes I_{n}\right) E^{m}, \\
Y^{m} & =Y^{m-1}+\left(S \otimes I_{n}\right) E^{m}, \quad m=1,2, \ldots, \tag{5}
\end{align*}
$$

Where B and S are real $s \times s$ non-singular matrices and L is strictly lower triangular matrix of order s, and λ is a real constant. Cooper and Butcher [1] also showed that successive over-relaxation may be applied to improve the rate of convergence for scalar test problem. Cooper and Vigneswaran [2] proposed an efficient scheme where the elements $Y^{m}=y_{1}^{m} \oplus y_{2}^{m} \oplus \ldots \oplus y_{s}^{m} \quad$ are obtained in sequence and the approximation defect is updated after each sub-step is completed. Only one vector transformation is needed for each full step. The rate of convergence of this scheme has been improved in [3], [4], and [5]. Cooper and Vigneswaran [6] proposed another scheme, which is a generalization of the basic scheme (5), to obtain improved rate of convergence, by adding extra sub- steps. Further improvement in the rate of convergence of this scheme has been obtained in [7].

In this paper, in order to accelerate the convergence rate of the proposed linear iteration schemes Vigneswaran [8] proposed a class of non-linear iteration scheme based on projection method. This scheme is discussed detail in the section 2 . In section 3, this result is extended to the higher order Gauss methods such as threestage and four-stage. In the final section numerical results are carried out to confirm the obtained results.

2. A class of Non-Linear Schemes based on Projection Method

2.1 Projection method for linear system

More attention have been taken on Jacobi and the Gauss-Seidel schemes and their accelerated forms when solving large linear algebraic systems of equations. But Householder [9] proposed a class of method with the help of functional analysis approach which has been called projection method. This techniques have been used to accelerate convergence of iterative process for non-linear problems.

Consider solving the linear system $A x=b$, where A is assumed to be a $n \times n$ non-singular matrix. Let x_{k} represent any iterate and let $\delta_{k}=x-x_{k}, r_{k}=b-A x_{k}$, represent the error and residual respectively, where x is the true solution. A method of projection is one in which at each step, the error δ_{k} is resolved into two components, one of which is required to lie in a subspace selected at that step, and the other is δ_{k+1}, which is required to be less than δ_{k} in some norm. The subspace is selected by choosing a matrix Y_{k}, whose columns are linearly independent and form a basis for the subspace. In practice Y_{k} is generally a single vector y_{k}. That is, $\delta_{k+1}=\delta_{k}-Y_{k} u_{k}$, where u_{k} is a vector (or scalar if Y_{k} is a vector) to be selected at the $k^{\text {th }}$ step so that $\delta_{k+1} \leq \delta_{k}$. Householder shows that δ_{k+1} is minimized by choosing u_{k} so that $Y_{k} u_{k}$ is the projection of δ_{k} onto the subspace spanned by the columns of Y_{k} with respect to G, where G is a positive definite matrix. This implies that δ_{k+1} is minimized when $Y_{k}^{H} G\left(\delta_{k}-Y_{k} u_{k}\right)=0$, where $Y_{k}^{H}=\bar{Y}_{k}^{T}$ is the Hermitian of Y_{k}. Here $\|\cdot\|$ is defined by $\left\|\delta_{k}\right\|^{2}=\delta_{k}^{H} G \delta_{k}$.

2.2 A class of non-linear scheme

The above idea is used to solve the non-linear system of equations $D(Y)=0$. Vigneswaran [8] proposed a non-linear scheme based on projection method is of the form

$$
\begin{equation*}
Y^{m+1}=Y^{m}+\mu^{m} E^{m}, m=1,2,3, \ldots \tag{6}
\end{equation*}
$$

Where μ^{m} is scalar and E^{m} is a vector. Let $\Delta^{m}=Y-Y^{m}$. In this new scheme, E^{m} is chosen from the general linear iteration scheme. The scalar μ^{m} is chosen as $\mu^{m} E^{m}$ is the projection Δ^{m} onto E^{m} with respect to a positive definite matrix $G^{H} G$, where G is a $s n \times s n$ non-singular matrix. Hence

$$
\begin{gather*}
\Delta^{m+1}=\Delta^{m}-\mu^{m} E^{m} \\
\mu^{m}=\frac{\left(G E^{m}\right)^{H} G \Delta^{m}}{\left(G E^{m}\right)^{H}\left(G E^{m}\right)}, m=1,2,3, \ldots \tag{7}
\end{gather*}
$$

Suppose that the sequence $Y^{m} \rightarrow Y$ as $m \rightarrow \infty$. if E^{m} is chosen so that $E^{m} \rightarrow 0$ gives $D\left(Y^{m}\right) \rightarrow 0$, it follows that $D(Y)=0$. Here G and E^{m} have to be chosen so that the scheme can be efficiently implemented and performs well. In each step of the iteration (6) the scalar μ^{m} has to be calculated by using (7) but the numerator of μ^{m} contains Δ^{m} which is not known. To make the process feasible the matrix G may be chosen as $\left(Q \otimes I_{n}\right) D^{\prime}\left(Y^{m}\right)$, where Q is a $s \times s$ non-singular matrix. Since $D\left(Y^{m}\right)=-D^{\prime}\left(Y^{m}\right) \Delta^{m}+O\left(\left\|\Delta^{m}\right\|\right)^{2}, \quad G \Delta^{m}$ may be approximated by $\left(Q \otimes I_{n}\right) D\left(Y^{m}\right)$. Since $F^{\prime}\left(Y^{m}\right)$ is the block diagonal matrix and each diagonal block is the Jacobian off at one of $y_{1}^{m}, y_{2}^{m}, \ldots, y_{s}^{m}$. Thus the evaluation of $D^{\prime}\left(Y^{m}\right)$ requires more computation. To reduce this, the Jacobian is computed infrequently. Let J be the Jacobian evaluated at recent point x_{p}. then $F^{\prime}\left(x_{p}\right)=I_{s} \otimes J$ and $D^{\prime}\left(Y^{m}\right)=-\left(I_{s n}-h A \otimes J\right)$. Hence from (7), we obtain
$\mu^{m}=\frac{\left[\left(Q \otimes I_{n}\right)\left(I_{s n}-h A \otimes J\right) E^{m}\right]^{H}\left(Q \otimes I_{n}\right) D\left(Y^{m}\right)}{\left[\left(Q \otimes I_{n}\right)\left(I_{s n}-h A \otimes J\right) E^{m}\right]^{H}\left[\left(Q \otimes I_{n}\right)\left(I_{s n}-h A \otimes J\right) E^{m}\right]}$,

Where $E^{m}=E_{1}^{m} \oplus E_{2}^{m} \oplus \ldots \oplus E_{s}^{m} \quad$ and
$E_{i}^{m}=O \oplus O \oplus \cdots \oplus O \oplus \varepsilon_{i}^{m} \oplus O \oplus \cdots \oplus O, O$ the zero vector.

2.2.1 The s-step non-linear scheme

Vigneswaran [8] also consider the s-step non-linear scheme which is more efficient than the general class of non-linear scheme given
by (6) with (8). In this scheme elements of $Y^{m}=y_{1}^{m} \oplus y_{2}^{m} \oplus \cdots \oplus y_{s}^{m}$ are obtained in sequence and are updated after each sub-step is completed. He consider the scheme

$$
Y^{m}=Y^{(1)},
$$

$\mu_{i}^{m}=\frac{\left[\left(Q \otimes I_{n}\right)\left(I_{s n}-h A \otimes J\right) E_{i}^{m}\right]^{H}\left(Q \otimes I_{n}\right) D\left(Y^{(i)}\right)}{\left[\left(Q \otimes I_{n}\right)\left(I_{s n}-h A \otimes J\right) E_{i}^{m}\right]^{H}\left[\left(Q \otimes I_{n}\right)\left(I_{s n}-h A \otimes J\right) E_{i}^{m}\right]}$,
$Y^{(i+1)}=Y^{(i)}+\mu_{i}^{m} E_{i}^{m}, i=1,2, \ldots s$,
$Y^{(s+1)}=Y^{m+1}, \quad m=1,2,3, \ldots$

In this scheme
$Y^{(i)}=y_{1}^{(m+1)} \oplus y_{2}^{(m+1)} \oplus \cdots \oplus y_{i}^{(m+1)} \oplus y_{i-1}^{(m+1)} \oplus y_{i+1}^{(m+1)} \oplus \cdots \oplus y_{i}^{(m)}$
for $i=1,2, \ldots, s$.
The non-singular matrix Q and E^{m} have to be chosen so that the scheme performs well. The efficiency of this scheme examined when it is applied to the linear scalar problem $x^{\prime}=q x$ with rapid convergence required for all

$$
z=h q \in \mathbb{C}^{-}=\{z \in \mathbb{C} \mid \operatorname{Re}(z) \leq 0\}
$$

This gives
$\Delta^{m+1}=M(z) \Delta^{m}, \quad m=1,2, \ldots$.
Where the iteration matrix is given as
$M(z)=-[D(z)+L(z)]^{-1} L^{H}(z)$,
Where $L(z)=\left(l_{i j}(z)\right)$ is a strictly lower triangular matrix and $D(z)=\left(l_{i i}(z)\right)$ is a diagonal matrix and $l_{i j}(z)=e_{i}^{H}\left(I_{s}-z A\right)^{H} Q^{H} Q\left(I_{s}-z A\right) e_{j}, \quad$ these elements are independent of the choice of E^{m}. Hence Q should be chosen to minimize the spectral radius of $M(z)$ over \mathbb{C}^{-}. This seems to be very difficult. We apply a different approach which is we impose spectral radius of $M(z)$ to be zero for real z. The following theorem gives an upper bound for $\rho[M(z)]$ for the two stage Gauss method in the left half plane. The coefficient matrix of the two stage Gauss method is given by

$$
A=\left[\begin{array}{cc}
a_{1} & a_{1}-b_{1} \tag{11}\\
a_{1}+b_{1} & a_{1}
\end{array}\right],
$$

Where $a_{1}=\frac{1}{4}$ and $\mathrm{b}_{1}=\frac{\sqrt{3}}{6}$.
Theorem 1. Consider the two-stage Gauss method with coefficient matrix given by (11) and $S=I$. Suppose that $\rho[M(z)]=0$ on the real axis $z=x$. Then there exists a non-singular matrix Q such that
$Q^{H} Q=\left(\begin{array}{cc}1 & 0 \\ 0 & \frac{b_{1}-a_{1}}{b_{1}+a_{1}}\end{array}\right)$
and

$$
\rho[M(z)] \leq 1-\left(\frac{a_{1}}{b_{1}}\right)^{2} \quad \text { for all } z \in \mathbb{C}^{-}
$$

In this approach, it is difficult to handle the 3-stage Gauss method and 4-stage Gauss method. We may transform the coefficient matrix and the iteration matrix to a block diagonal matrix. The result for $s=2$ may be applied to other methods when $s>2$.

3. Improved Convergence Rate for s>2

Many iterative methods have coefficient matrices which may be transformed to real block diagonal matrices.

For each s - stage method of order $2 s$ there is a real matrix S such that
$S^{-1} A S=\bar{A}=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{r}$
A real block diagonal matrix. The sub matrices are chosen to have the form
$A_{i}=\left[\begin{array}{cc}a_{i} & a_{i}-b_{i} \\ a_{i}+b_{i} & a_{i}\end{array}\right], \quad i=1,2, \ldots, r$,
with $b_{i}>a_{i}, i=1,2, \ldots, r$ and except that, when s is odd $A_{r}=\left[a_{r}\right]$. Many iterative methods have coefficient matrices which may be transformed to real block diagonal matrices of the same form as (12). The iteration matrix M (z) can be written as a partition form corresponding to the partition of $S^{-1} A S$:
$S^{-1} M(z) S=\bar{M}(z)=M_{1}(z) \oplus M_{2}(z) \oplus \cdots \oplus M_{r}(z)$.
Then the spectral radius is given by
$\rho[\bar{M}(z)]=\max _{1 \leq i \leq r} \rho\left[M_{i}(z)\right]$,
$M_{i}(z)=-\left[D_{i}(z)+L_{i}(z)\right]^{-1} L_{i}^{H}(z), \quad i=1,2, \ldots, r$,
$D(z)=D_{1}(z) \oplus D_{2}(z) \oplus \cdots \oplus D_{r}(z) \quad$ and
$L(z)=L_{1}(z) \oplus L_{2}(z) \oplus \cdots \oplus L_{r}(z)$
Corresponding to the partition of $S^{-1} A S$. When $s=3$ the method of order $2 s$ has the matrix of coefficients

$$
A=\left[\begin{array}{ccc}
\frac{5}{36} & \frac{2}{9}-\frac{\sqrt{15}}{15} & \frac{5}{36}-\frac{\sqrt{15}}{30} \\
\frac{5}{36}+\frac{\sqrt{15}}{24} & \frac{2}{9} & \frac{5}{36}-\frac{\sqrt{15}}{24} \\
\frac{5}{36}+\frac{\sqrt{15}}{30} & \frac{2}{9}+\frac{\sqrt{15}}{15} & \frac{5}{36}
\end{array}\right]
$$

And there is a matrix S such that

$$
S^{-1} A S=\bar{A}=\left[\begin{array}{ccc}
a_{1} & a_{1}-b_{1} & 0 \\
a_{1}+b_{1} & a_{1} & 0 \\
0 & 0 & a_{2}
\end{array}\right]=A_{1} \oplus A_{2},
$$

where $a_{1} \simeq 0.142342788, b_{1} \simeq 0.196731007, a_{2} \simeq 0.215314423$
And a numerical calculation gives

$$
S \simeq\left[\begin{array}{ccc}
-0.0455241821 & 0.0441943589 & 0.0721518521 \\
-0.140048242 & -0.139620426 & 0.118832579 \\
1.0 & -0.244595668 & 1.0
\end{array}\right]
$$

Where the columns are eigenvectors of $\left[a_{1} I-A\right]^{2}$.
Let $D=D_{1} \oplus D_{2}$ and $L=L_{1} \oplus L_{2}$ so that the result of the
Theorem 1 may be applied using (14), we get

$$
\rho\left[M_{1}(z)\right] \leq 1-\left(\frac{a_{1}}{b_{1}}\right)^{2} \square 0.4765 \text { For all } \mathrm{z} \in \mathrm{C}^{-} .
$$

On the other hand, since $D_{2}=\left[l_{33}\right]$ and $L_{2}=[0]$, gives

$$
M_{2}(z)=0 \quad \text { implies } \rho\left[M_{2}(z)\right]=0
$$

Then
$\rho[\bar{M}(z)]=0.4765$ for all $z \in \mathbb{C}^{-}$
and in this case we obtain

$$
Q^{H} Q=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{15}\\
0 & \frac{b_{1}-a_{1}}{b_{1}+a_{1}} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Next, consider the four-stage Gauss method with matrix of coefficients $A=\left[a_{i j}\right]$ obtained by solving the sets of equations $\sum_{j=1}^{4} a_{i j} c_{j}^{r-1}=\frac{c_{i}^{r}}{r}, \quad r=1,2,3,4, \quad$ for each $i=1,2,3,4$,
where $c_{1}, c_{2}, c_{3}, c_{4}$ are the zeros of $P_{4}(2 x-1)$, the transformed legendre polynomial of degree 4 . The elements of the transformed matrix
$S^{-1} A S=\bar{A}=\left[\begin{array}{cccc}a_{1} & a_{1}+b_{1} & 0 & 0 \\ a_{1}+b_{1} & a_{1} & 0 & 0 \\ 0 & 0 & a_{2} & a_{2}+b_{2} \\ 0 & 0 & a_{2}+b_{2} & a_{2}\end{array}\right]=A_{1} \oplus A_{2}$,
where $a_{1} \simeq 0.091566240, a_{2} \simeq 0.158433760, b_{1} \simeq 0.147520224$, $b_{2} \simeq 0.165384116$ and
$S \simeq\left[\begin{array}{cccc}0.063771667 & -0.054434907 & -0.231157907 & 0.013395896 \\ -0.027613999 & 0.161524607 & -0.083606572 & -0.040682019 \\ -0.784055901 & -0.290017081 & -0.859410259 & -0.266775537 \\ 1.0 & -1.164674610 & 1.0 & -1.364336800\end{array}\right]$
Where the columns are eigenvectors of $\left[a_{1} I-A\right]^{2}$ and $\left[a_{2} I-A\right]^{2}$. Again the result of the Theorem 1 may be applied using (14), we obtain

$$
\begin{aligned}
& \rho\left[M_{1}(z)\right] \leq 1-\left(\frac{a_{1}}{b_{1}}\right)^{2} \simeq 0.6147, \text { for all } z \in \mathbb{C}^{-} \\
& \rho\left[M_{2}(z)\right] \leq 1-\left(\frac{a_{1}}{b_{1}}\right)^{2} \simeq 0.0823, \text { for all } z \in \mathbb{C}^{-}
\end{aligned}
$$

Where the matrices D and L are given by
$L=L_{1} \oplus L_{2}=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ l_{21} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & l_{43} & 0\end{array}\right], D=D_{1} \oplus D_{2}=\left[\begin{array}{cccc}l_{11} & 0 & 0 & 0 \\ 0 & l_{22} & 0 & 0 \\ 0 & 0 & l_{33} & 0 \\ 0 & 0 & 0 & l_{44}\end{array}\right]$.
Then
$\rho[\bar{M}(z)]=0.6147$ for all $z \in \mathbb{C}^{-}$
and we obtain

$$
Q^{H} Q=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{16}\\
0 & \frac{b_{1}-a_{1}}{b_{1}+a_{1}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \frac{b_{2}-a_{2}}{b_{2}+a_{2}}
\end{array}\right)
$$

4. NUMERICAL RESULTS

In this section, a number of numerical experiments were carried out in order to evaluate the efficiency of the proposed class of general non-linear scheme. Results for three non-linear initial value problems are reported and compared with results obtained using the scheme described in Cooper and Butcher [1].

Problem 1 denotes the non-linear system
$\begin{array}{lr}x_{1}^{\prime}=-0.013 x_{1}+1000 x_{1} x_{3}, & x_{1}(0)=1, \\ x_{2}^{\prime}=2500 x_{2} x_{3}, & x_{2}(0)=1, \\ x_{3}^{\prime}=0.013 x_{1}-1000 x_{1} x_{3}-2500 x_{2} x_{3}, & x_{3}(0)=0,\end{array}$
Where the eigenvalues of the Jacobian at the initial point are 0, 0.0093 and -3500.

Problem 2 is also the non-linear system

$$
\begin{array}{ll}
x_{1}^{\prime}=-55 x_{1}+65 x_{2}-x_{1} x_{3}, & x_{1}(0)=1, \\
x_{2}^{\prime}=0.0785\left(x_{1}-x_{2}\right), & x_{2}(0)=1, \\
x_{3}^{\prime}=0.1 x_{1}, & x_{3}(0)=0,
\end{array}
$$

Where, initially, the eigenvalues of the Jacobian are the complex conjugate pair $-0.0062 \pm 0.01 i$ and -55 .

Problem 3 Insulator physics non-linear problem
$\begin{array}{ll}x_{1}^{\prime}=-x_{1}+10^{8} x_{3}\left(1-x_{1}\right), & x_{1}(0)=1, \\ x_{2}^{\prime}=-10 x_{2}+3 \times 10^{7} x_{3}\left(1-x_{2}\right), & x_{2}(0)=0, \\ x_{3}^{\prime}=-x_{1}^{\prime}-x_{2}^{\prime}, & x_{3}(0)=0,\end{array}$
Where the eigenvalues of the Jacobian at the initial point are $0,-1.0$ and -3.0×10^{7}.

For each problem, a single step was carried out, in each method, using the Jacobian evaluated at the initial point. For each scheme tested, the initial iterate Y^{0} is chosen as $Y^{0}=e \otimes x$, where x is the true solution at the initial point.

Method 1 denotes the three-stage Gauss method implemented according to the basic scheme (5) with parameters given in Cooper and Butcher [1] with relaxation parameter $\omega=1$.
Method 1^{*} denotes the three-stage Gauss method but implemented using the non-linear scheme (9) proposed here with the matrix Q given by (15) and E^{m} chosen from the scheme (5).

Method 2 denotes the four-stage Gauss method implemented according to the basic scheme (5) with parameters given in Cooper and Butcher [1] with relaxation parameter $\omega=1$.

Table 1. Values of m giving $e_{m} \leq 10^{-9}$ for Gauss method

Problems		Methods			
	Step size	1	1^{*}	1	2^{*}
1	$\mathrm{~h}=10^{-5}$	6	3	3	2
2	$\mathrm{~h}=2 \times 10^{-6}$	7	3	8	2
3	$\mathrm{~h}=3.3 \times 10^{-8}$	8	3	10	2

Method 2^{*} denotes the four-stage Gauss method but implemented using the non-linear scheme (9) proposed here with the matrix Q given by (16) and E^{m} chosen from the scheme (5).
For each problem the quantities
$e_{m}=\left\|Y^{m}-Y^{m-1}\right\|_{\infty}, \quad m=1,2,3, \ldots$,

Are calculated. The values of $e_{m} \leq \mathrm{TOL}=10^{-9}$ are tabulated for each problem and method. Similar results are obtained for different values of TOL. The Results are given in table 1.

5. CONCLUSION

Numerical result shows that, the proposed class of general nonlinear iteration scheme accelerates the convergence rate of the general linear iteration scheme proposed by Cooper and Butcher [1] for some stiff problems that has strong stiffness. It will be possible to apply the proposed class of general non-linear scheme to accelerate the rate of convergence of other linear iteration schemes.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interest related to the publication of this article.

REFERENCES

[1] G.J. Cooper and J. C. Butcher, "An iteration scheme for implicit Runge-Kutta methods", IMA J. Numer. Anal., vol. 3, pp. 127-140, 1983.
[2] G. J. Cooper and R. Vignesvaran, "A scheme for the implementation of implicit Runge-Kutta methods", Computing, vol. 45, pp. 321-332, 1990.
[3] R. Vignesvaran, "Some Linear Schemes for Two-stage Gauss Type Runge-Kutta Method", Proceedings of the Third Annual Research Session at the Eastern University, Sri Lanka, pp. 160183, 2004.
[4] R. Vignesvaran, "Some Efficient Schemes with Improving Rate of Convergence for Two-stage Gauss Method", Journal of Mathematics, Statistics and Operational Research (JMSOR), vol. 2, pp. 23-29, 2013.
[5] R. Vignesvaran and S. Kajanthan, "Some Efficient Implementation Schemes for Implicit Runge-Kutta Methods", International Journal of Pure and Applies Mathematics (IJPAM), vol. 93, pp. 525-540, 2014.
[6] G. J. Cooper and R. Vignesvaran, "Some schemes for the implementation of implicit Runge-Kutta methods", J. Comp. App. Math, vol. 45, pp. 213-225, 1993.
[7] R. Vignesvaran and S. Kajanthan, "Improving Rate of Convergence of an Iterative Scheme with Extra sub-steps for Twostage Gauss Method", International Journal of Pure and Applied Mathematics (IJPAM), vol. 116, pp. 243-261, 2017.
[8] R. Vignesvaran, "A Non-Linear Scheme based on projection method for Two-stage Gauss Method", International Journal of Pure and Applied Mathematics (IJPAM), vol. 101, pp. 463-476, 2015.
[9] A. S. Householder, "Theory of Matrices in Numerical Analysis", Blaisdel Publishing Company, A division of Ginn and Company, New York, 1964.

