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Abstract: Several iteration schemes have been proposed to solve the non-
linear equations arising in the implementation of implicit Runge-Kutta meth-
ods. As an alternative to the modified Newton scheme, some iteration schemes
with reduced linear algebra costs have been proposed A scheme of this type
proposed in [9] avoids expensive vector transformations and is computationally
more efficient. The rate of convergence of this scheme is examined in [9] when
it is applied to the scalar test differential equation x′ = qx and the convergence
rate depends on the spectral radius of the iteration matrix M(z), a function
of z = hq, where h is the step-length. In this scheme, we require the spectral
radius of M(z) to be zero at z = 0 and at z = ∞ in the z-plane in order to im-
prove the rate of convergence of the scheme. New schemes with parameters are
obtained for three-stage and four-stage Gauss methods. Numerical experiments
are carried out to confirm the results obtained here.
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1. Backround

Let us consider an initial value problem for stiff system of n(≥ 1) ordinary
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differential equations

x′ = f(x(t)), x(t0) = x0, f : Rn → R
n, (1)

where f is assumed to be as smooth as necessary. An s-stage implicit Runge-
Kutta method computes an approximation xr+1 to the solution x(tr+1) at grid
point tr+1 = tr + h by

xr+1 = xr + h

s
∑

i=1

bif(yi)

where the internal approximations y1, y2, · · · , ys satisfy the sn equations

yi = xr + h

s
∑

j=1

aijf(yj), i = 1, 2, · · · , s (2)

A = [aij ] is the real coefficient matrix and b = (b1, b2, · · · , bs)
T is the column

vector of the Runge-Kutta method. Let Y = y1 ⊕ y2 ⊕ · · · ⊕ ys ∈ R
sn and let

F (Y ) = f(y1)⊕f(y2)⊕· · ·⊕f(ys) ∈ R
sn. Then equation (2) may be represented

by the compact form

Y = e⊗ xr + h(A⊗ In)F (Y ) (3)

where e = (1, 1, · · · , 1)T and A ⊗ In is the Kronecker product of the matrix A

with n×n identity matrix In and, in general A⊗B = [aijB]. This article deals
with methods suitable for stiff systems so that the matrix A is not strictly lower
triangular and, in particular, is concerned with Gauss methods since they have
highest order and good stability properties.

Equation (3) may be solved by a modified Newton iteration. Let J be the
Jacobian of f evaluated at some recent point xr, updated infrequently. The
modified Newton scheme evaluates Y 1, Y 2, Y 3, · · · , to satisfy

(Isn − hA⊗ J)(Y m − Y m−1) = D(Y m−1), m = 1, 2, · · · , (4)

where D is the approximation defect, D(Z) = e ⊗ xr − Z + h(A ⊗ In)F (Z).
In each step of this iteration, a set of sn linear equations has to be solved.
Schemes have been developed, to solve equation (4), which use the fact that
J is constant [1], [6], [7]. In other schemes advantage is taken of the special
forms of some implicit methods [2], [4], [5], [12].

In another approach, schemes based directly on iterative procedure have
been developed [3], [8], [9], [10],[13],[21]. For a singly implicit method, there is
a non-singular matrix S so that S−1AS = λ(Is − L)−1, where L is zero except
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for some ones on the sub-diagonal. On applying this transformation, the scheme
(4) becomes

[Is ⊗ (In − hλJ)]Em = [(Is − L)S−1 ⊗ In]D(Y m−1) + (L⊗ In)E
m,

Y m = Y m−1 + (S ⊗ In)E
m, m = 1, 2, 3 · · · · (5)

Cooper and Butcher [8] proposed an iterative scheme, sacrificing superlinear
convergence for reduced linear algebra cost, which may be regarded as a gen-
eralization of the scheme (5) for singly implicit methods. They considered the
scheme

[Is ⊗ (In − hλJ)]Em = (B1S
−1 ⊗ In)D(Y m−1) + (L1 ⊗ In)E

m,

Y m = Y m−1 + (S ⊗ In)E
m, m = 1, 2, · · · , (6)

whereB1 and S are real s×s non-singular matrices and L1 is strictly lower trian-
gular matrix of order s, and λ is a real constant. Cooper and Butcher [8] showed
that successive over-relaxation may be applied to improve the rate of conver-
gence for scalar test problem. Peat and Thomas [19], after extensive numerical
experiments, concluded that the schemes proposed by Cooper and Butcher are,
in general, the most efficient schemes for integration of stiff problems. Gladwell
and Thomas [15] recommended this scheme for the two-stage Gauss method.
Each step of the scheme (6) requires s function evaluations and the solution of s
sets of n linear equations. These s sub-steps are performed in sequence and it is
not possible to compute elements of Y m = ym1 ⊕ym2 ⊕· · ·⊕yms until all sub-steps
are completed. Cooper and Vignesvaran [9] considered a scheme where these
elements are obtained in sequence and the approximation defect is updated af-
ter each sub-step completed. Only one vector transformation is needed for each
full step so that this scheme is more efficient. Another scheme was proposed by
Cooper and Vignesvaran [10] in order to obtain improved rate of convergence,
by adding extra sub-steps.Vigneswaran [20] obtained further improvement in
the rate of convergence of the iteration scheme proposed in [10]. Gonzalez,
Gonzalez and Montijano [16] proposed a scheme for Gauss methods using an
iterative procedure of semi-implicit type in which the Jacobian does not appear
explicitly. A scheme of this type was proposed in [17] in which convergence and
stability properties of the scheme are discussed in detail.
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2. Efficient Iteration Scheme

Cooper and Vignesvaran [9] proposed the scheme

[Is ⊗ (In − hλJ)]Em = (L⊗ In)(e⊗ xr − Y m)

+(U ⊗ In)(e⊗ xr − Y m−1)

+h(T ⊗ In)F (Y m)

+h(R⊗ In)F (Y m−1)

Y m = Y m−1 + Em,m = 1, 2, · · · , (7)

where B is a real non-singular matrix such that B = L+ U and BA = T +R,
L and T are strictly lower triangular matrices, U and R are upper triangular
matrices, and λ is a real constant. Cooper and Vignesvaran [9] showed that
D(Y ) = 0 if the sequence {Y m} has a limit Y and f is continuous on R

n. They
observed that the scheme can be implemented efficiently by updating Y m−1 and
F (Y m−1) as soon as each element of Y m = ym1 ⊕ym2 ⊕· · ·⊕yms is computed. The
work involved is no more than is needed to carry out an evaluation of D(Y m−1)
followed by a transformation to (B ⊗ In)D(Y m−1).

Cooper and Vignesvaran [9] tested the rate of convergence of this scheme
when it is applied to the scalar test problem x′ = qx with rapid convergence
required for all z ∈ C

−, where C
− = {z ∈ C : Re ≤ 0}. For this test problem,

the scheme gives (7) gives

Y − Y m = M(z)(Y − Y m−1), m = 1, 2, · · · ,

and the rate of convergence depends on the spectral radius ρ[M(z)] of the
iteration matrix

M(z) = Is − [(Is + L− z(λIs + T )]−1B(Is − zA). (8)

Cooper and Vignesvaran[9] imposed the condition that the iteration matrix
M has only one non-zero eigenvalue φ,

φ(z) = 1− β
det(Is − zA)

(1− λz)s
, (9)

so that the spectral raqdius, ρ[M(z)], given by ρ[M(z)] = |φ(z)| and λ and
β(= detB) can be chosen to solve the problem

min
λ,β

max
z∈C−

ρ[M(z)]. (10)
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To solve the minimization problem (10),when λ > 0 it follows from (9) that
φ is analytic and bounded on C

− and hence |φ| attains its maximum on the
imaginary axis z = iy, y real. The polynomial p, defined by

p(ω) = |φ(iy)|2, ω =
1

1 + (λy)2
, (11)

is a polynimial of degree s. For a given method, the coefficients of p depends
on λ and β only and Cooper and Vignesvaran[9] obtained these parameters to
minimize the maximum of p on [0, 1] for the Gauss methods of order 4,6 and 8
respectively.

Consider the three-stage Gauss method with matrix of coefficients

A =















5
36

2
9 −

√
15
15

5
36 −

√
15
30

5
36 +

√
15
24

2
9

5
36 −

√
15
24

5
36 +

√
15
30

2
9 +

√
15
15

5
36















(12)

and det(I − zA) = 1−
1

2
z +

1

10
z2 −

1

120
z3.

Cooper and Vignesvaran[9]obtained the optimum values λ = 0.202740067
and β = 1.159572736 when solving the problem(10). For these values of λ and
β, ρ[M(z)] < 0.1599 for all z ∈ C

−.

Next it remains to choose the elements of B = [bij ] so that the iteration
matrixM(z) = [mij(z)] is strictly upper triangular matrix except thatmss(z) =
φ, a non-zero eigenvalue. For the three-stage Gauss method, the condition on
M(z) gives

b11 = 1,

b12a21 + b13a31 = λ− a11,

b12(a22 − λ) + b13a32 = −a12,

b21b12 − b22 = −1,

b21(a12 − b12a11) + b22(a22 − a21b12) + b23(a32 − a31b12) = λ, (13)

b31b12 = 0,

b31a11 + b32a21 + b33a31 = 0.
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From (13), it happens that b31 = 0. Again the equations (13) together with
detB = β may be solved by choosing b21 = 0 and this gives

B =













1 0.151290053 0.068750541

0 1 0.058981649

0 −0.983175783 1.101583408













. (14)

Consider the four-stage Gauss method with matrix of coefficients A = [aij ]
obtained by solving the sets of equations

4
∑

j=1

aijc
r−1
j =

cri
r
, r = 1, 2, 3, 4,

for each i = 1, 2, 3, 4, where c1, c2, c3, c4 are the zeros of P4(2x − 1), the trans-
formed legendre polynomial of degree 4. For this method,

det(I − zA) = 1−
1

2
z +

3

28
z2 −

1

84
z3 +

1

1680
z4.

The condition on M(z)with the choices b31 = 0 and b41 = b42 = 0 give a system
of equations which may be ordered as a sequence of sets of lnear equations given
below:

b11 = 1,

b12a21 + b13a31 + b14a41 = (λ− a11),

b12(a22 − λ) + b13a32 + b14a42 = −a12, (15)

b12a23 + b13(a33 − λ) + b14a43 = −a13,

b12b21 − b22 = −1,

b13b21 − b23 = 0,

(b12a11 − a12)b21 + (b12a21 − a22)b22

+(b12a31 − a32)b23 + (b12a41 − a42)b24 = −λ, (16)

(a13 − b13a11)b21 + (a23 − b13a21)b22

+(a33 − b13a31)b23 + (a43 − b13a41)b24 = 0,
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b33 = 1,

b32a21 + b34a41 = −a31, (17)

b32a23 + b34a43 = λ− a33,

b43a31 + b44a41 = 0. (18)

Cooper and Vignesvaran[9] showed that these equations can be solved only for
one positive value of λ, λ = 0.146840443 and they obtained the optimum
value β = 1.034 to solve the problem (10). In this case, ρ[M(z)] < 0.3467 for
Re(z) ≤ 0. With these values of λ and β, the set of equations (15),(16),(17),(18)
and the equation detB = β give

B =





















1 0.265166833 0.079402432 −0.018488567

0.124164683 1.032924356 0.009858978 0.124164683

0 −0.786754443 1 −0.108118541

0 0 −1.109340683 1.045019753





















. (19)

3. Schemes with Improving Rates of Convergence

In this section, additional constraints, which require super-linear convergence
at the origin and infinity, are imposed on the spectral radius of the iteration
matrix M(z) in addition to the condition that M(z) has only one non-zero
eigenvalue. The results were obtained for the two-stage Gauss method in [22].
In this paper, new schemes corresponding to the iteration scheme (7) for three-
stage and four-stage Gauss methods are obtained respectively.

3.1. The Case ρ[M(z)] = 0 at z = 0

For the three-stage Gauss method, the additional constraint ρ[M(z)] = 0 at
z = 0 gives β = 1. Therefore, the other parameter λ has to be chosen to solve
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the problem(10). It follows from (11) that the polynomial p is given by

p(ω) = a0ω(1− ω)2 + (1− ω)[a1ω − a2(1− ω)]2,

where a0 = 3− 1
10 λ2 , a1 = 3− 1

2 λ , , a2 = 1− 1
120 λ3 .

A simple grid search procedure shows that good approximation to the op-
timum value of λ to minimize the maximum of p on [0, 1] is given by λ =
0.191729022. Again the condition on M(z) gives the set of equations (13) and
these equations togethger with detB = β may be solved by choosing b21 = 0.
This gives

B =













1 0.115697224 0.067542178

0 1 0.009448755

0 −0.885047715 0.991637400













. (20)

In this case ρ[M(z)] < 0.2326 for all z ∈ C
−.

For the four-stage Gauss method, the additional constraint ρ[M(z)] = 0 at
z = 0 gives β = 1. Again from (11), the polynomial p is given by

p(ω) = (1− ω)2[a4(1− ω)− a2ω]
2 + ω(1− ω)[a1ω − a3(1− ω)]2,

where a1 = 4−
1

2 λ
, a2 = 6−

3

28 λ2
, a3 = 4−

1

84 λ3
, a4 = 1−

1

1680 λ4
. Again

the system of equations (15),(16),(17) and (18) can be solved only for λ =
0.146840443 and for these fixed values of λ and β, the equations (15), (16),
(17), (18)and detB = β gives

B =





















1 0.265166833 0.079402432 −0.018488567

0.124164683 1.032924356 0.009858978 0.124164683

0 −0.786754443 1 −0.108118541

0 0 −1.072863330 1.010657402





















. (21)

In this case ρ[M(z)] < 0.3542 for all z ∈ C
−.

The equation |φ(z)| = c describes a closed curve in the z-plane. Typical
curves are plotted for different values of c and sketched in Figures 1 and 2 for
three-stage and four-stage Gauss methods respectively. In this case, ρ[M(z)] ≤
c on and interior to the curve. Since ρ[M(0)] = 0, these schemes are expected
to perform well as typical stiff problems have Jacobian with some eigenvalues
of small modulus.
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Figure 1: Curves ρ[M(z)] = c for s = 3
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Figure 2: Curves ρ[M(z)] = c for s = 4

3.2. The Case ρ[M(z)] = 0 at z = ∞

The constraint ρ[M(∞)] = 0 for the three-stage Gauss method gives λ =
3

√

β

120
and the polynomial p, given by (11), is

p(ω) = ω[a0ω − a2(1− ω)]2 + a21ω
2(1− ω),

where a0 = 1− β, a1 = 3−
β

2λ
, a2 = 3−

β

10λ2
. By search procedure, a good

approximation to the optimum value of β is obtained by β = 1.181387098 and
the corresponding λ is given by λ = 0.214323763. In this case ρ[M(z)] < 0.2359
for all z ∈ C

−. With these values of λ and β, the equations (13) with detB = β

may be solved by choosing b21 = 0. This gives

B =













1 0.187138824 0.071808998

0 1 0.112237507

0 −0.958395854 1.073819136













. (22)

For the four-stage Gauss method, the additional constraint ρ[M(∞)] = 0
gives β = 1680λ4. It follows from (11) that the polynomial p is given by

p(ω) = [a0ω
2 − a2ω(1− ω)]2 + ω(1− ω)[a1ω − a3(1− ω)]2,

where a0 = 1− β, a1 = 4−
β

2λ
, a2 = 6 −

3β

28λ2
, a3 = 4 −

β

84λ3
. With the

value λ = 0.146840443, which solves the sets of equations 15),(16),(17),(18),
and the corresponding value of β, those sets of equations and detB = β give
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B =





















1 0.265166833 0.079402432 −0.018488567

0.124164683 1.032924356 0.009858978 0.124164683

0 −0.786754443 1 −0.108118541

0 0 −0.837985352 0.789397936





















. (23)

In this case ρ[M(z)] < 0.2189 for all z ∈ C
−.
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Figure 3: Curves ρ[M(z)] = c for s = 3
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Figure 4: Curves ρ[M(z)] = c for s = 4

As per the plotted curves for ρ[M(z)] = c for different values of c in in
Figures 3 and 4 for three-stage and four-stage Gauss methods,these schemes
are expected to perform well as typical stiff problems have Jacobian with some
eigenvalues of large negative real parts and ρ[M(∞)] = 0.

4. Numerical Results

To evaluate the efficiency of the schemes obtained here, a range of numerical
experiments was carried out. For each experiment, a single step was carried
out, in each case, using the Jacobian evaluated at the initial point. For each
scheme tested, the initial iterate Y 0 is chosen as Y 0 = e ⊗ x, where x is the
true solution at the initial point.

Problem 1 denotes the non-linear system given by [14]

x′1 = −0.013x1 + 1000x1x3, x1(0) = 1,
x′2 = 2500x2x3, x2(0) = 1,
x′3 = 0.013x1 − 1000x1x3 − 2500x2x3, x3(0) = 0,

where the eigenvalues of the Jacobian at the initial point are 0, −0.0093 and
−3500.
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Problem 2 is the elliptic two-body problem, with eccentricity 0.6,

x′1 = x3, x1(0) = 0.4,
x′2 = x4, x2(0) = 0,

x′3 = −x1
(

x21 + x22
)−3/2

, x3(0) = 0,

x′4 = −x2
(

x21 + x22
)−3/2

, x4(0) = 2.

The eigenvalues at the initial point are ±5.5902 and ±3.9528i.
Problem 3 is the HIRES problem given by [18],

x′1 = −1.71x1 + 0.43x2 + 8.32x3 + 0.0007, x1(0) = 1,
x′2 = 1.71x1 − 8.75x2, x2(0) = 0,
x′3 = −10.03x3 + 0.43x4 + 0.035x5, x3(0) = 0,
x′4 = 8.32x2 + 1.71x3 − 1.12x4, x4(0) = 0,
x′5 = −1.745x5 + 0.43x6 + 0.43x7, x5(0) = 0,
x′6 = −280x6x8 + 0.69x4 + 1.71x5)− 0.43x6 + 0.69x7, x6(0) = 0,
x′7 = 280x6x8 − 1.81x7, x7(0) = 0,
x′8 = −x′7, x8(0) = 0.0057.

The eigenvalues of the Jacobian at the initial point are 0,−10.4841,
−8.278,−0.2595,−0.5058,−2.3147 and −2.6745 ± 0.1499i.

Problem 4 denotes the system

x′1 = x2, x1(0) = 2,
x′2 = 106((1− x21)x2)− x1, x2(0) = 0,

derived from the Van der Pol’s equation and given by [11]. The eigenvalues of
the Jacobian at the initial point are close to 0 and −3000000.

Problem 5 denotes the system, with non-linear coupling between smooth
and transient components,

x′1 = −105x1 + 2, x1(0) = 1,
x′2 = −106x2 + 0.1x21, x2(0) = 1,
x′3 = −40× 105x3 + 0.4

(

x21 + x22
)

, x3(0) = 1,
x′4 = −107x4 + x21 + x22 + x23, x4(0) = 1,

where the Jacobian has constant eigenvalues −105, −106, −40× 105 and −107.
For each problem, a single step was carried out, in each case, using the

Jacobian evaluated at the initial point . For each scheme tested, the initial it-
erate Y 0 is chosen as Y 0 = e⊗x, where x is the true solution at the initial point.
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em Method 1 Method 1∗ Method 2 Method 2∗

e1 0.000956220 0.000824833 0.000895782 0.000866327
e2 0.000152341 0.000110398 0.000142783 0.000143328
e3 0.000024273 0.000000910 0.000028768 0.000028367
e4 0.000003867 0.000000031 0.000001011 0.000000127
e5 0.000000616 0.000000005 0.000000054 0.000000033
e6 0.000000098 0.000000001 0.000000016 0.000000008
e7 0.000000016 0.000000000 0.000000005 0.000000002
e8 0.000000002 0.000000001 0.000000001
e9 0.000000000 0.000000000

Table 1: Values of em for Problem 1 with h = 0.1

Method 1 denotes the three-stage Gauss method implemented according
to the iteration scheme(7) with λ = 0.202740067 and the matrix B given by
(14). Method 1∗ is the same method implemented using the scheme (7)
with λ = 0.191729022 and B given by (20) for the case ρ[M(z)] = 0 at z =
0. Method 1∗∗ is also the same method implemented using the scheme (7)
with λ = 0.214323763 , B given by (22) for the case ρ[M(z)] = 0 at z = ∞.
Method 2 denotes the four-stage Gauss method implemented according to the
scheme (7) with λ = 0.146840443 and B given by (19). Method 2∗ is the
same method implemented using the scheme (7) with λ = 0.146840443 and
B given by (21) for ρ[M(0)] = 0 . Method 2∗∗ is also the same method
implemented using the scheme (7) with the same value of λ and B given by
(23) for ρ[M(∞)] = 0.

For each method and problem, the quantities

em = ‖Em‖, m = 1, 2, 3, · · ·

were computed using the maximum norm on R
ns. The values em for which

em ≤ TOL = 10−9 are tabulated for each problem and method. Similar
results are obtained for different values of TOL. The results are given below for
each problem for three-stage and four-stage Gauss methods.
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em Method 1 Method 1∗ Method 2 Method 2∗

e1 0.064323263 0.055470109 0.060234720 0.058254081
e2 0.010337141 0.007429666 0.009595467 0.009632142
e3 0.001670882 0.000067048 0.001945151 0.001918104
e4 0.000270379 0.000000270 0.000072013 0.000008450
e5 0.000043831 0.000000002 0.000002754 0.000000149
e6 0.000007117 0.000000000 0.000000106 0.000000000
e7 0.000001157 0.000000004
e8 0.000000189 0.000000000
e9 0.000000031
e10 0.000000005
e11 0.000000001

Table 2: Values of em for Problem 2 with h = 0.01

em Method 1 Method 1∗ Method 2 Method 2∗

e1 0.017382122 0.015000547 0.016278083 0.015742827
e2 0.002728084 0.002012693 0.002608108 0.002618024
e3 0.000428244 0.000013213 0.000523517 0.000516215
e4 0.000067235 0.000000021 0.000017567 0.000003710
e5 0.000010557 0.000000000 0.000000591 0.000000025
e6 0.000001658 0.000000020 0.000000000
e7 0.000000260 0.000000001
e8 0.000000041
e9 0.000000006
e10 0.000000001
e11 0.000000000

Table 3: Values of em for Problem 3 with h = 0.01

5. Concluding Remarks

According to the numerical results, for three-stage Gauss method, the method
1∗ performs better than method 1 for the problems whose Jacobian matrices
have small eigenvalues and the method 1∗∗ performs better than method 1
for the problems whose Jacobian matrices have eigenvalues with large negative
real part. For four-stage Gauss method, Method 2∗ is better than Method 2 for
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em Method 1 Method 1∗∗ Method 2 Method 2∗∗

e1 0.000000820 0.000000840 0.000000884 0.000000876
e2 0.000000149 0.000000155 0.000000364 0.000000275
e3 0.000000024 0.000000018 0.000000119 0.000000007
e4 0.000000004 0.000000000 0.000000039 0.000000001
e5 0.000000001 0.000000013 0.000000000
e6 0.000000004
e7 0.000000001
e8 0.000000001

Table 4: Values of em for Problem 4 with h = 0.1

em Method 1 Method 1∗∗ Method 2 Method 2∗∗

e1 1.229888995 1.259710539 1.325937141 1.313889816
e2 0.223847832 0.232791462 0.546093036 0.412513120
e3 0.035719849 0.026955933 0.177844840 0.010989760
e4 0.005699876 0.000005372 0.057918610 0.000015235
e5 0.000909531 0.000000009 0.018862359 0.000000018
e6 0.000145134 0.000000001 0.006142907 0.000000000
e7 0.000023159 0.000000000 0.002000561
e8 0.000003696 0.000651523
e9 0.000000590 0.000212182
e10 0.000000094 0.000069101
e11 0.000000015 0.000022504
e12 0.000000002 0.000007329
e13 0.000000000 0.000002387
e14 0.000000777
e15 0.000000253

Table 5: Values of em for Problem 5 with h = 0.1

problems with small eigenvalues and Method 2∗∗ is better than Method 2 for
problems with eigenvalues which have large negative real parts. In overall, the
numerical experiments confirm that the new schemes obtained for the Gauss
methods peform well.
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