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1. Introduction

There are two general approaches proposed by several authors to the implemen-
tation of implicit s-stage Runge-Kutta methods to integrate a stiff system of
n ordinary differential equations. In one approach, a modified Newton scheme
is used and each step of this scheme requires the solution of a set of sn linear
equations which is expensive. In this approach, schemes are developed to solve
these linear equations efficiently, [6], [1], [7]. In another scheme of this general
type, due to Butcher [2], a similarity transformation of the coefficient matrix of
the method is used. That is particularly effective when the coefficient matrix
has a single point spectrum. To deal with methods where the coefficient matrix
has a more general spectrum, Enright [12] proposed the use of an additional
similarity transformation to transform the Jacobian matrix of the differential
system to Hessenberg form. This scheme is comparatively inefficient when n > s

since each of the corresponding vector transformations requires O(s2n + sn2)
operations. Varah [21] proposed the use of complex arithmatics to deal with
the case where the coefficient matrix of the method has a complex spectrum.
In final proposal of this first general type, Cash [5] proposed a family of im-
plicit Runge-Kutta methods of a special form which again makes the system
of equations effectively of lower dimension. Butcher and Cash [4] developed a
special class of implicit Runge-Kutta methods for stiff initial value problems
and these methods were derived from known singly implicit methods by adding
one or more extra diagonally implicit stages.

The other approach is to use schemes based directly on iterative procedures.
Frank and Ueberhuber [13] describe the use of iterated defect correction and a
variety of schemes have been discussed by Butcher [3]. He suggested how higher
order methods could be used in combination with diagonally implicit methods
through an iterated defect correction process. Cooper and Butcher [8] consid-
ered a more general scheme which explicitly uses the Jacobian of differential
system. Cooper and Vignesvaran [9] developed an alternative scheme which is
computationally more efficient. Improved rates of convergence of this scheme
were obtained in [22], [23], [24]. Another scheme was proposed by Cooper and
Vignesvaran [10] in order to obtain improved rate of convergence, by adding
extra sub-steps. Gonzalez, Gonzalez and Montijano [17] proposed a scheme for
Gauss methods using an iterative procedure of semi-implicit type in which the
Jacobian does not appear explicitly. A scheme of this type was proposed in
[18] in which convergence and stability properties of the scheme are discussed
in detail. In this paper, the scheme proposed in [10] is discussed further and
improved rates of convergence are obtained. Results are obtained only for the
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two-stage Gauss method and, in Section 4, some numerical results are given.

2. Motivation

We consider an initial value problem for stiff system of n(≥ 1) ordinary differ-
ential equations

x′ = f(x(t)), x(t0) = x0, f : Rn → R
n, (1)

where f is assumed to be as smooth as necessary. An s-stage implicit Runge-
Kutta method computes an approximation xr+1 to the solution x(tr+1) at grid
point tr+1 = tr + h by

xr+1 = xr + h

s
∑

i=1

bif(yi)

where the internal approximations y1, y2, · · · , ys satisfy the sn equations

yi = xr + h

s
∑

j=1

aijf(yj), i = 1, 2, · · · , s, (2)

A = [aij ] is the real coefficient matrix and b = (b1, b2, · · · , bs)T is the column
vector of the Runge-Kutta method. Let Y = y1 ⊕ y2 ⊕ · · · ⊕ ys ∈ R

sn and let
F (Y ) = f(y1)⊕f(y2)⊕· · ·⊕f(ys) ∈ R

sn. Then equation (2) may be represented
by the compact form

Y = e⊗ xr + h(A⊗ In)F (Y ) (3)

where e = (1, 1, · · · , 1)T and A ⊗ In is the Kronecker product of the matrix A
with n×n identity matrix In and, in general A⊗B = [aijB]. This paper deals
with methods suitable for stiff systems so that the matrix A is not strictly lower
triangular and, in particular, is concerned with Gauss methods of maximum
order.

Equation (3) may be solved by a modified Newton iteration. Let J be the
Jacobian of f evaluated at some recent point xr, updated infrequently. The
modified Newton scheme evaluates Y 1, Y 2, Y 3, · · · , to satisfy

(Isn − hA⊗ J)(Y m − Y m−1) = D(Y m−1), m = 1, 2, · · · , (4)

where D is the approximation defect, D(Z) = e⊗ xr −Z + h(A⊗ In)F (Z). In
each step of this iteration, a set of sn linear equations has to be solved.
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For a singly implicit method, there is a non-singular matrix S so that
S−1AS = λ(Is−L)−1, where L is zero except for some ones on the sub-diagonal.
On applying this transformation, the scheme (4) becomes

[Is ⊗ (In − hλJ)]Em = [(Is − L)S−1 ⊗ In]D(Y m−1) + (L⊗ In)E
m,

Y m = Y m−1 + (S ⊗ In)E
m, m = 1, 2, 3 · · · · (5)

Cooper and Butcher [8] proposed an iterative scheme, sacrificing superlinear
convergence for reduced linear algebra cost, which may be regarded as a gen-
eralization of the scheme (5) for singly implicit methods. They considered the
scheme

[Is ⊗ (In − hλJ)]Em = (B1S
−1 ⊗ In)D(Y m−1) + (L1 ⊗ In)E

m,

Y m = Y m−1 + (S ⊗ In)E
m, m = 1, 2, · · · , (6)

where B1 and S are real s × s non-singular matrices and L1 is strictly lower
triangular matrix of order s, and λ is a real constant. Peat and Thomas [20],
after extensive numerical experiments, concluded that the schemes proposed by
Cooper and Butcher are, in general, the most efficient schemes for integration
of stiff problems. Gladwell and Thomas [16] recommended this scheme for
the two-stage Gauss method. Cooper and Vignesvaran [10] proposed a scheme
which is a generalization of the basic scheme (6). They considered the scheme

[Ir ⊗ (In − hλJ)]Em = (BS−1 ⊗ In)D(Y m−1) + (L⊗ In)E
m,

Y m = Y m−1 + (SR⊗ In)E
m, m = 1, 2, 3, · · · , (7)

where B and RT are real r × s matrices (r > s), each of column rank s,
and L is a strictly lower triangular matrix of order r. In this scheme, Em =
Em1 ⊕Em2 ⊕· · ·⊕Emr is computed and then Y m = ym1 ⊕ym2 ⊕· · ·⊕yms is computed
in each step of the iteration. It has been shown in [10] that if (Em) has limit
zero, then (Y m) has a limit Y such that D(Y ) = 0. In this scheme, each step
of the iteration still requires s function evaluations but consists of r sub-steps
so that there are additional linear algebra cost for solving additional r− s sets
of linear equations in each step.

The convergence rate of the scheme is examined when it is applied to the
scalar problem x′ = qx, with rapid convergence required for all z ∈ C

−, where
C
− = {z | ℜ(z) ≤ 0} . Let ∆m = (S−1 ⊗ In)(Y − Y m). Then the scheme (7)

applied to this test problem gives

∆m = M(z)∆m−1, m = 1, 2, 3, · · · ,
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where Y is the solution of D(Y ) = 0 and M is the iteration matrix given by

M(z) = Is −R[(1− λz)Ir − L]−1B(Is − zA), A = S−1AS. (8)

Cooper and Vignesvaran [10] considered the partitioned form of the parameter
matrices as follows:

B =

[

Is
B21

]

B11, L =

[

L11 0
L21 L22

]

, R = [Is, R12], (9)

where B11 is an s × s non-singular matrix with β = detB11 and, L11 and L22

are strictly lower triangular matrix of order s and r− s respectively. With this
partitioning, M may be written as

M(z) = Is − P (z)Q(z), (10)

where

P (z) = Is +R12[(1− λz)Ir−s − L22]
−1[L21 +B21(1− λz)Is − L11],

Q(z) = [(1− λz)Is − L11]
−1B11(Is − zA). (11)

Cooper and Vignesvaran [10] considered the case r = s+ 1 only. For this case,
L22 = 0 and B21 = uT is a row vector and R12 = η is a column vector. Define
vT = L21 −B21L11.

Cooper and Vignesvaran [10] considered the two-stage Gauss method and im-
posed the condition that M has one non zero eigenvalue, so that the spectral
radius depends only on three parameters. These parameters were obtained by
considering the problem

min sup
z∈C−

ρ[M(z)]. (12)

The remaining parameters in the iteration matrix were chosen to force one
eigenvalue of M to be zero.

In Section 3, we minimize a lower bound f(z) for the spectral radius of the
iteration MatrixM in regions in z plane . This bound depends only on λ, c and
σ which are defined in Section 3. For the two-stage Gauss method λ, c and σ
are obtained by considering the minimization problem

ǫ = min
λ, c, σ

sup
z∈X

|f(z)|, (13)

where X ⊆ C
− . Two new schemes are proposed by considering the cases

X = C
− and X = R

−, where R
− = {x ∈ R : x ≤ 0}. In Section 4, some

numerical experiments are reported in order to confirm the results obtained in
Section 3.
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3. A Lower Bound for the Spectral Radius of M(z)

Cooper and Vignesvaran [10] restricted the iteration matrix M so that it has
only one non-zero eigenvalue. In this section , this restriction is removed and a
lower bound for ρ[M(z)] is obtained. This lower bound depends only on λ and
other two parameters. Let φ1, φ2, . . . , φs be the eigenvalues of the matrix M(z)
given by (10). Then

(1− φ1)(1 − φ2) · · · (1− φs)) = det[Is −M(z)]

= det[P (z)] det[Q(z)]. (14)

Suppose that the eigenvalues of the real matrix A are µ1, µ̄1, µ2, µ̄2, . . . ,
where µ̄i denotes the complex conjugate of µi, i = 1, 2, · · · .
Set ξ = λz and νi =

µi

λ
, then the equation (14) becomes

(1− φ1)(1 − φ2) · · · (1− φs)) = q(ξ), (15)

where q(ξ) =
c(1− σξ)(1− ξν1)(1− ξν̄1), · · · , (1 − ξνs)(1 − ξν̄s)

(1− ξ)s+1
,

c = β(1 + (u+ v)T η), σ =
1 + uT η

1 + (u+ v)T η
. (16)

Cooper and Vignesvaran [10] assumed that 1 ≥ |φ1| ≥ |φ2| ≥ · · · ≥ |φs| and
derived the inequality

|φ1| ≥ |1− |q(ξ)| 1s | (17)

with the minimum attained if and only if φ1, φ2, . . . , φs are real and equal. Now,
consider the minimization problem

ǫ = min
q

max
ξ∈X

|1− |q(ξ)| 1s |. (18)

For given methods the coefficients of q depends on λ, σ and c only and these
parameters have to be chosen to minimize the maximum of
|1 − |q(ξ)| 1s | on X. In this paper, the minimization problem (18) is solved for
the two stage Gauss method for the cases X = C

− and X = R
−.
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3.1. The Two Stage Gauss Method

Now we restrict attention to the two-stage Gauss method. In this case, the
coefficient matrix

A =

[

a a− b

a+ b a

]

, a =
1

4
, b =

√
3

6

has two distinct eigenvalues µ and µ̄, where µ = a + i
√
b2 − a2. The corre-

sponding eigenvectors are columns of the matrix

W =

[

1 1
w w̄

]

,

where w = u1 + i v1, v1 6= 0.

Let

R12 = η =

(

r1
r2

)

, B21 = uT =
(

u1 u2
)

, L11 =

(

0 0
l1 0

)

,

L21 =
(

l2 l3
)

, B11 =

(

b11 b12
b21 b22

)

,

and let

(ηvT ) =W−1(ηvT )W, (ηuT ) =W−1(ηuT )W, Ā =W−1AW, B̄11 =W−1B11W,

and L̄11 =W−1L11W . Then

B̄11 =

[

α γ

γ̄ ᾱ

]

, L̄11 = l

[

−1 −1
1 1

]

, Ā =

[

µ 0
0 µ̄

]

,

(ηvT ) =

[

τ1 θ1
θ̄1 τ̄1

]

, (ηuT ) =

[

τ2 θ2
θ̄2 τ̄2

]

,

where

τ1 =
w̄r1(l2 − u2l1)− r2(l2 − u2l1) + ww̄r1l3 −wr2l3

w̄ − w
,

τ2 =
w̄r1u1+ww̄r1u2−r2u1+wr2u2

w̄−w ,

θ1 =
w̄r1(l2 − u2l1)− r2(l2 − u2l1) + w̄2r1l3 − w̄r2l3

w̄ − w
,

θ2 =
w̄r1u1+w̄2r1u2−r2u1−w̄r2u2

w̄−w ,
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α =
w̄b11 − b21 + ww̄b12 − wb22

w̄ − w
,

γ = w̄b11−b21+w̄2b12−w̄b22
w̄−w , l = l1

w̄−w .
Applying these transformations into (10), we obtain

M̄(z) =W−1M(z)W

= I2−
[(1− λz)I2 + (ηvT ) + (1− λz)(ηuT )][((1 − λz)I2 + L̄11)B̄11(I2 − zĀ)]

(1− λz)3
,

and it follows that

M̄(ξ) =

[

m̄11(ξ) m̄12(ξ)
m̄21(ξ) m̄22(ξ)

]

where ξ = λz, ν = µ
λ , ψ = α− (α+ γ̄)l, χ = γ − (γ + ᾱ)l,

m̄11(ξ) = 1− (1−ξν)[(1−ξ+τ1+(1−ξ)τ2)(ψ−αξ)+(θ1+(1−ξ)θ2)(χ̄−γ̄ξ)]
(1−ξ)3 ,

m̄12(ξ) = − (1−ξν̄)[(1−ξ+τ1+(1−ξ)τ2)(χ−γξ)+(θ1+(1−ξ)θ2)(ψ̄−ᾱξ)]
(1−ξ)3 ,

m̄21(ξ) = − (1−ξν)[(θ̄1+(1−ξ)θ̄2)(ψ−αξ)+(1−ξ+τ̄1+(1−ξ)τ̄2)(χ̄−γ̄ξ)]
(1−ξ)3 ,

m̄22(ξ) = 1− (1−ξν̄)[(θ̄1+(1−ξ)θ̄2)(χ−γξ)+(1−ξ+τ̄1+(1−ξ)τ̄2)(ψ̄−ᾱξ)]
(1−ξ)3 .

The eigenvalues φ1 and φ2 of M̄(ξ) are solutions of

φ2 − p(ξ) φ+ p(ξ)− 1 + q(ξ) = 0, (19)

where

p(ξ) = 2− (1− ξν)[(1− ξ + τ1 + (1− ξ)τ2)(ψ − αξ) + (θ1 + (1− ξ)θ2)(χ̄− γ̄ξ)]

(1− ξ)3

−(1− ξν̄)[(θ̄1 + (1− ξ)θ̄2)(χ− γξ) + (1− ξ + τ̄1 + (1− ξ)τ̄2)(ψ̄ − ᾱξ)]

(1− ξ)3
,

q(ξ) =
c(1 − σξ)(1− ξν)(1− ξν̄)

(1− ξ)3
. (20)

From (17), |φ1| ≥ |1 − |q(ξ)| 12 | with the minimum attained if and only if φ1
and φ2 are real and equal. That is, |φ1| = |1− |q(ξ)| 12 | if and only if

(

p(ξ)

2
− 1

)2

= q(ξ). (21)
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Let X = C
−. To find |ǫ| = min

q
max
ξ∈C−

|1− |q(ξ)| 12 |, observe that q(ξ) is analytic

and bounded on C
− and hence |1− |q(ξ)| 12 | attains its maximum on the imagi-

nary axis ξ = i y, y ∈ R . Let r(ω) = 1− |q(iy)| 12 , where ω =
1

1 + y2
. It follows

that

r(ω) = 1− [a0ω
3 + a1ω

2(1− ω) + a2ω(1− ω)2 + a3(1− ω)3]
1

4

where
a0 = c2, a1 = c2((σ + ν + ν̄)2 − 2(νν̄ + σ(ν + ν̄))),

a2 = c2((νν̄ + σ(ν + ν̄))2 − 2σνν̄(σ + ν + ν̄)), a3 = (cσνν̄)2.

These coefficients depend on λ, σ and c only and these parameters have to be
chosen to minimize the maximum of |r(ω)| on [0, 1]. The maximum of |r(ω)|
occurs at the end points of [0, 1] or at

ω1 =
−(a1 − 2a2 + 3a3) + ((a1 − 2a2 + 3a3)

2 − 3(a0 − a1 + a2 − a3)(a2 − 3a3))
1

2

3(a0 − a1 + a2 − a3)
,

or at

ω2 =
−(a1 − 2a2 + 3a3)− ((a1 − 2a2 + 3a3)

2 − 3(a0 − a1 + a2 − a3)(a2 − 3a3))
1

2

3(a0 − a1 + a2 − a3)
,

where
d

dω
[r(ω)] = 0 at ω = ω1 and ω = ω2.

Since r(ω) is continuous on [0, 1], λ, σ and c must be chosen so that r(ω)
equioscillates four times on [0,1]. Hence r(0) = r(ω2) = ǫ and r(1) = r(ω1) =
−ǫ. This gives λ = 0.217129273 , c = 1.027954404 , σ = 0.535183758, and
ǫ = 0.0139, and this occurs when ξ = 0, ±

√
3i, ± i√

3
, ±∞. For these values

of ξ, the equation (21) holds. This gives

ζ2 = 4c,

((ζ − 3κ2)± i
√
3(κ1 − 3ϑ))2 = 4c(δ1 ± i

√
3ς1),

((ζ − 1

3
κ2)± i

1√
3
(κ1 −

1

3
ϑ))2 = 4c(δ2 ± i

1√
3
ς2),

ϑ2 = 4cσ|ν|2,

where ζ = 2 Re(ψ(1 + τ1 + τ2) + χ̄(θ1 + θ2)), ϑ = 2 Re(ν(α(1 + τ2) + γ̄θ2)),
κ1 = 2 Re(α(1+ τ1+ τ2)+ψ+νψ(1+ τ1+ τ2)+ τ2ψ+ γ̄(θ1+θ2)+χθ̄2+χν̄(θ̄1+
θ̄2)), κ2 = 2 Re(α+ αν(1 + τ1 + τ2) + ατ2 + νψ(1 + τ2) + θ2γ̄ + νγ̄(θ1 + θ2) +
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ν̄χθ̄2), δ1 = 8(3σν + 3σν̄ + 3νν̄ − 1), ς1 = 8(3σνν̄ − (σ + ν + ν̄)),
δ2 =

8
27 (σνν̄ − 3(σ + ν + ν̄)), ς2 =

8
9(3− σν − σν̄ − νν̄).

This implies

ζ2 = 4c,

(ζ − 3κ2)
2 − 3(κ1 − 3ϑ)2 = 4cδ1,

(ζ − 3κ2)(κ1 − 3ϑ) = 2cς1,

(ζ − 1

3
κ2)

2 − 1

3
(κ1 −

1

3
ϑ)2 = 4cδ2,

(ζ − 1

3
κ2)(κ1 −

1

3
ϑ) = 2cς2,

ϑ2 = 4cσ|ν|2.

These six conditions and the equations (16) give eight equations in eleven un-
known elements of the parameter matrices. These equations may be solved by
choosing B21 = 0 and B11 as lower triangular matrix. Hence, we obtain

S = I2, L21 = [−1.211288546 0.863683808],

RT12 = [−0.171698521 0.764794515],

B11 =





1.214917992 0

−0.292049833 0.452824393



 , (22)

L11 =





0 0

1.304771023 0



 ,

and the corresponding eigenvalues of M̄ are given by

φ(ξ) =
p(ξ)±

√

(p(ξ))2 − 4(p(ξ) − 1 + q(ξ))

2
.

With the parameters given by (22), we obtain ρ[M̄(ξ)] ≤ 0.0256 for all ξ ∈ C
−

with lower bound |ǫ| = 0.0139 attained at ξ = 0, ±
√
3i, ± i√

3
, ± ∞ and

is exceeded elsewhere in the imaginary axis ξ = iy. This result is appreciably
better than the result obtained in [10].
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3.2. Minimization on the Negative Real Axis

In this case |1 − |q(ξ)| 12 | attains its maximum on the negative real axis ξ =

x, x ∈ R
−. Let r1(ω) = 1− |q(x)| 12 , where ω =

1

1− x
. It follows that

r1(ω) = 1− [b0ω
3 + b1ω

2(1− ω) + b2ω(1− ω)2 + b3(1− ω)3]
1

2

where

b0 = c, b1 = c(σ + ν + ν̄),

b2 = c(νν̄ + σ(ν + ν̄)), b3 = (cσνν̄).

These coefficients depend on λ, σ and c only and these parameters have to be
chosen to minimize the maximum of |r1(ω)| on [0, 1]. The maximum of |r1(ω)|
occurs at the end points of [0, 1] or at

ω1 =
−(b1 − 2b2 + 3b3) + ((b1 − 2b2 + 3b3)

2 − 3(b0 − b1 + b2 − b3)(b2 − 3b3))
1

2

3(b0 − b1 + b2 − b3)

or at

ω2 =
−(b1 − 2b2 + 3b3)− ((b1 − 2b2 + 3b3)

2 − 3(b0 − b1 + b2 − b3)(b2 − 3b3))
1

2

3(b0 − b1 + b2 − b3)
,

where
d

dω
[r1(ω)] = 0 at ω = ω1 and ω = ω2.

Since r1(ω) is continuous on [0, 1], λ, σ and c must be chosen so that r1(ω)
equioscillates four times on [0,1]. Hence r1(0) = r1(ω2) = ǫ and r1(1) =
r1(ω1) = −ǫ. This gives λ = 0.388797743 , c = 0.993103367 , σ = 1.839202054
and ǫ = 0.0035, and this occurs when ξ = 0, − 3, − 1

3 , −∞. For these values
of ξ, equation (21) holds. This gives

ζ2 = 4c,

(ζ − 3κ1 + 9κ2 − 27ϑ)2 = 4cδ,

(ζ − 1

3
κ1 +

1

9
κ2 −

1

27
ϑ)2 = 4cς,

ϑ2 = 4cσ|ν|2,

where ζ = 2 Re(ψ(1 + τ1 + τ2) + χ̄(θ1 + θ2)), ϑ = 2 Re(ν(α(1 + τ2) + γ̄θ2)),
κ1 = 2 Re(α(1+ τ1+ τ2)+ψ+νψ(1+ τ1+ τ2)+ τ2ψ+ γ̄(θ1+θ2)+χθ̄2+χν̄(θ̄1+
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θ̄2)), κ2 = 2 Re(α+ αν(1 + τ1 + τ2) + ατ2 + νψ(1 + τ2) + θ2γ̄ + νγ̄(θ1 + θ2) +
ν̄χθ̄2), δ = 64(1 + 3(σ + ν + ν̄) + 9σν + 9σν̄ + 9νν̄ + 27σνν̄),
ς = 64

729 (27 + 9(σ + ν + ν̄) + 3σν + 3σν̄ + 3νν̄ + σνν̄).

These four conditions and the equations (16) give various schemes. One
particular scheme is obtained by choosing B21 = 0, RT12 = [1, 1] and the first
element of L21 as zero. Hence, we obtain

S = I2, L21 = [0 − 0.456285949],

B11 =





1.745600824 0.134428143

−0.508658139 1.007183177



 , (23)

L11 =





0 0

0.735721095 0



 ,

and the corresponding eigenvalues of M̄ is given by

φ(ξ) =
p(ξ)±

√

(p(ξ))2 − 4(p(ξ) − 1 + q(ξ))

2
.

It follows from (23) that ρ[M̄(ξ)] = 0.0035 for all ξ ∈ R
− and this gives the

scheme an advantage though in general ρ[M̄ (ξ)] ≤ 0.0385 for all ξ ∈ C
−.

4. Numerical Results

A variety of numerical experiments was carried out in order to evaluate the
efficiency of the schemes obtained here. For each experiment, a single step was
carried out, in each case, using the Jacobian evaluated at the initial point. For
each scheme tested, the initial iterate Y 0 is chosen as Y 0 = x ⊕ x ⊕ · · · ⊕ x,
where x is the true solution at the initial point. Results for seven non-linear
initial value problems are reported and compared with results obtained using
the schemes described in [8], [10].

Problem 1 denotes the non-linear system given by [14]

x′1 = −0.013x1 + 1000x1x3, x1(0) = 1,
x′2 = 2500x2x3, x2(0) = 1,
x′3 = 0.013x1 − 1000x1x3 − 2500x2x3, x3(0) = 0,
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where the eigenvalues of the Jacobian at the initial point are 0, −0.0093 and
−3500.

Problem 2 is also the non-linear system, also given by [14],

x′1 = −55x1 + 65x2 − x1x3, x1(0) = 1,
x′2 = 0.0785(x1 − x2), , x2(0) = 1,
x′3 = 0.1x1, x3(0) = 0,

where , initially,the eigenvalues of the Jacobian are the complex conjugate pair
−0.0062 ± 0.01i and −55.

Problem 3 Insulator physics: Klopfenstein (1970),

x′1 = −x1 + 108x3(1− x1), x1(0) = 1,
x′2 = −10x2 + 3× 107x3(1− x2), x2(0) = 0,
x′3 = −x′1 − x′2, x3(0) = 0,

where the eigenvalues are 0, −1.0 and −3.0× 107.

Problem 4 is the HIRES problem given by [19],

x′1 = −x1 + 2, x1(0) = 1,
x′2 = −10x2 + 0.1x21, x2(0) = 1,
x′3 = −40x3 + 0.4

(

x21 + x22
)

, x3(0) = 1,
x′4 = −100x4 + x21 + x22 + x23, x4(0) = 1,

where the Jacobian has constant eigenvalues −1, −10, −40 and −100.
Problem 5 is the elliptic two-body problem, with eccentricity 0.6,

x′1 = x3, x1(0) = 0.4,
x′2 = x4, x2(0) = 0,

x′3 = −x1
(

x21 + x22
)−3/2

, x3(0) = 0,

x′4 = −x2
(

x21 + x22
)−3/2

, x4(0) = 2.

The eigenvalues at the initial point are ±5.5902 and ±3.9528i.
Problem 6 Chemistry: Bjurel et. al.[15],

x′1 = x3 − 100x1x2, x1(0) = 1,
x′2 = x3 + 2x4 − 100x1x2 − 2× 104x22, x2(0) = 1,
x′3 = −x3 + 100x1x2, x3(0) = 0,
x′4 = −x4 + 104x22, x3(0) = 0,

where the eigenvalues are 0,−0.002, −100 and −4.0× 104.



256 R. Vigneswaran, S. Kajanthan

Problem 7 denotes the system, with non-linear coupling between smooth
and transient components,

x′1 = −105x1 + 2, x1(0) = 1,
x′2 = −106x2 + 0.1x21, x2(0) = 1,
x′3 = −40× 105x3 + 0.4

(

x21 + x22
)

, x3(0) = 1,
x′4 = −107x4 + x21 + x22 + x23, x4(0) = 1,

where the Jacobian has constant eigenvalues −105, −106, −40× 105 and −107.

Method 1 denotes the two-stage Gauss method implemented according to
the basic scheme (6) with parameters given in [8, p.138].
Method 2 is the same Gauss method implemented using the scheme (7) with
one extra sub-step r = s+ 1 and with parameters given in [10, p.221].
Method 3 is the same Runge-Kutta method implemented according to the
scheme (7) with r = s + 1 and with parameters λ = 0.217129273 , c =
1.027954404 , σ = 0.535183758, and other parameter matrices given by (22).
Method 4 is the same Gauss method implemented using the scheme (7) with
r = s + 1 and with parameters λ = 0.388797743, c = 0.993103367, σ =
1.839202054 and other parameter matrices given by (23).

For each method and problem, the quantities

em = ‖Em‖, m = 1, 2, 3, · · ·

were computed using the maximum norm on R
ns. The values m for which

em ≤ TOL = 10−9 are tabulated for each problem and method in Table 1.
The detailed results for em for all problems are give in Tables 2 - 8. Similar
results are obtained for different values of TOL and these are not reported here.

The numerical results shows that the new methods 3 and 4 perform better
than the methods 1 and 2. The method 4 is marginally better than the method
3. In overall, the best performance was obtained in Method 4 since ρ[M̄ (0)] is
smallest in this case.
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Problem h Method 1 Method 2 Method 3 Method 4

1 0.1 7 6 5 5
2 1.0 8 7 7 6
3 3.3×10−4 6 6 5 5
4 0.01 8 7 6 6
5 0.01 8 7 6 6
6 2.5×10−7 8 6 5 5
7 0.1 9 8 7 6

Table 1: Values of m giving em ≤ 10−9 for two-stage Gauss method

Method 1 Method 2 Method 3 Method 4

0.000785721 0.000753411 0.000752338 0.000524945
0.000056476 0.000313924 0.000019405 0.000209617
0.000004034 0.000008559 0.000000417 0.000001509
0.000000287 0.000000213 0.000000022 0.000000008
0.000000020 0.000000005 0.000000000 0.000000000
0.000000001 0.000000000
0.000000000

Table 2: Detailed Results for Problem 1
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