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Dual P-Values, Evidential Tension

and Balanced Tests

Abstract:

In the classical approach to statistical hypothesis testing the role of the null hypothesis H0

and the alternative H1 is very asymmetric. Power, calculated from the distribution of the

test statistic under H1, is treated as a theoretical construct that can be used to guide the

choice of an appropriate test statistic or sample size, but power calculations do not explicitly

enter the testing process in practice. In a significance test a decision to accept or rejectH0 is

driven solely by an examination of the strength of evidence againstH0, summarized in the P-

value calculated from the distribution of the test statistic underH0. A small P–value is taken

to represent strong evidence againstH0, but it need not necessarily indicate strong evidence

in favour of H1. More recently, Moerkerke et al. (2006) have suggested that the special

status ofH0 is often unwarranted or inappropriate, and argue that evidence againstH1 can

be equally meaningful. They propose a balanced treatment of bothH0 andH1 in which the

classical P–value is supplemented by the P–value derived underH1. The alternative P–value

is the dual of the null P–value and summarizes the evidence against a target alternative.

Here we review how the dual P–values are used to assess the evidential tension between

H0 andH1, and use decision theoretic arguments to explore a balanced hypothesis testing

technique that exploits this evidential tension. The operational characteristics of balanced

hypothesis tests is outlined and their relationship to conventional notions of optimal tests

is laid bare. The use of balanced hypothesis tests as a conceptual tool is illustrated via

model selection in linear regression and their practical implementation is demonstrated by

application to the detection of cancer-specific protein markers in mass spectroscopy.

Keywords: balanced test, P- value, dual P–values, evidential tension, null hypothesis, alter-

native hypothesis, operating characteristics, false detection rate.
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1 Introduction

Suppose that we have a statistical model for data X ∈ X that depends upon a parameter θ ∈Θ

and we want to test the null hypothesis H0 : θ = θ0 against the alternativeH1 : θ 6= θ0 using

a test statistic T (X ) ∈ T ⊆ 0 ∪ R+, where large values of T are taken as providing evidence

against H0. Having observed t = T (x), the evidence against H0 is often summarized in the

P–value p = P(T ≥ t|H0), with small values of p being taken as underminingH0 in favour of

H1. Let H = 0 signify that H0 is true and H = 1 signify that H0 is false and H1 is true. The

implied test is equivalent to the decision rule H(T (X )) where

H(t) =





0, if p > α;

1, if p ≤ α.

Since P–values satisfy the inequality

Pr(P ≤ α|H0)≤ α

for all α ∈ [0,1], the probability of a false rejection using this decision rule is no more than α

and the significance level of the test, the Type I error, is α.

Having controlled the Type I error, the classical approach to statistical testing is to try to

determine the critical region so as to maximize power, P(T ≥ t|H1). Power calculations

can be used to guide the choice of an appropriate test statistic or sample size, but they do

not explicitly enter the testing process in practice. In a significance test a decision to accept

or reject the null hypothesis is driven solely by an examination of the strength of evidence

against H0, summarized in the value of p. See, inter alia, Cox and Hinkley (1974, Chapters

3-4). As noted by Cox and Hinkley, a serious limitation of such significance tests is that the

data could be consistent or inconsistent with an alternative of little practical interest or one

of great practical importance, whatever the P–value.

More recently, Moerkerke et al. (2006) have argued that the special status of the null hypothe-

sis is often unwarranted or inappropriate. Working in the context of genetic marker selection

and within the simple statistical framework of one sided tests of the difference between two

mean values, Moerkerke et al. (2006) suggest that rejecting a difference in two means of a
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specific magnitude can equally well justify ignoring a genetic marker in further studies as ac-

ceptance of no statistically significant difference. They therefore argue that evidence against

the alternative can be equally meaningful, particularly for those who are concerned with the

detection of practically important alternatives and who are prepared to specify an alternative

value of scientific or practical interest. Consequently, they have proposed giving considera-

tion to not only classical P-values, but also their counterparts derived under the alternative

of interest. They suggest summarizing evidence from the perspective of both the null and the

target alternative, and then balancing these.

In this paper we expand upon and generalize the ideas introduced in Moerkere et al (2006).

We develop the concept of dual P–values and evidential tension, and show how they can be

used to construct a practical decision rule, a balanced hypothesis test, that incorporates the

notions of both size and power. The operational characteristics of balanced hypothesis tests

are outlined and their relationship to conventional criteria for optimal tests is examined. The

employment of balanced hypothesis tests as a conceptual, interpretive device is illustrated via

model selection in linear regression, and their practical use is demonstrated by application to

the detection of cancer-specific protein markers in mass spectroscopy.

2 Dual P–values

To begin, consider testing H0 : θ = θ0 versus H1 : θ = θ1 6= θ0 using a test statistic T . We

suppose that T is sufficient for θ and that the distribution function of T is given by F0(t)

under H0 and F1(t) under H1, denoted T ∼ T0 when H = 0 and T ∼ T1 when H = 1

respectively. Also assume that F0 and F1 are continuous with common support T, respective

densities f0 > 0 and f1 > 0, a.e. , and that T0 is stochastically smaller than T1. Now let

p0 = Pr(T ≥ t|H = 0) = Pr(T0 ≥ t) = 1− F0(t)

the classical P–value, and set

p1 = Pr(T < t|H = 1) = Pr(T1 < t) = F1(t) .

Although small values of p0 may represent strong evidence against H0 such values do not
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necessarily represent strong evidence in favour of the alternative. The alternative P-value p1,

on the other hand, measures how likely it is to obtain a statistic as small as or smaller than the

value observed when the alternative is assumed true. The alternative P–value corresponds,

of course, to the classical P–value for testing H1 versus H0 and provides a summary of the

evidence against H1, small values of p1 undermining H1 in favour of H0. As suggested

in Moerkere et al (2006), a large p1 indicates an event quite likely under the alternative

hypothesis and we can think of the evidence against H0 and in favour of H1 growing as p0

becomes smaller and p1 becomes larger. Thus, p0 and p1 perform a dual role and will be

referred to as dual P–values.

Example 1: Let X = {X1, . . . , Xn} where X i are i.i.d. N(µ,σ2) so that X = Rn and θ = (µ,σ2).

Assume, for simplicity, that σ2 is known and that we wish to testH0 : µ = µ0 versusH1 : µ 6=

µ0. If λn is used to denote the likelihood ratio statistic, then it is easily shown that

T = −2 log(λn) =
n

σ2
(X −µ0)

2

where X = n−1
∑n

i=1 X i. UnderH0 the statistic T ∼ T0 = χ
2(1,0), whilst under the alternative

T ∼ T1 = χ
2(1,γ), γ= n(|µ1−µ0|/σ)2, for any µ1 6= µ0.

If we observe T = t then p0 = Pr(χ2(1,0) > t) and p1 = Pr(χ2(1,γ) ≤ t). It is well known

that Pr(χ2(1,γ) > t) is an increasing function of γ (Gupta and Perlman, 1974) and the

traditional interpretation of this result is that the power of the test is an increasing function of

n for a given |µ1 −µ0|, indicating the ability of a significance test based on T to discriminate

more clearly between H0 and H1 as the sample size increases. From a practical perspective

however, this property implies that for a given n the P–value p1 will decrease as |µ1 − µ0|,

the difference between the null and the alternative, increases. The latter indicates that if

an alternative value of scientific or practical interest differs from the null by a considerable

margin then p1 could be small and the data need not provide evidence in favour of H1, even

if p0 is itself very small and the credibility ofH0 is seriously in doubt.

This elementary example clearly demonstrates one of the basic tenants of the current ap-

proach. If the practitioner is prepared to designate a particular alternative of scientific or
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practical relevance then, intuitively, we would wish to reject H0 in favour of H1 only if the

observed value of T appears improbable under H0 whilst, at the same time, appearing quite

likely underH1.

The following example (i) illustrates the interaction between p0 and p1, (ii) demonstrates the

perhaps rather trite point that F0 and F1 only have to be known approximately, and, more

importantly, (iii) it shows that our ideas and results have very broad applicability.

Example 2: Suppose that we have a statistical model for data X = {X1, . . . , Xn} that depends

upon a parameter θ = (θ1, . . . ,θp) and we want to test a null hypothesis characterized by a

set of r ≤ p linearly independent restrictions, that is, we wish to test H0 : h(θ) = 0 against

the alternative H1 : h(θ) 6= 0.

Assume that we have an unrestricted estimator bθn of theta, bθn : X 7→ Θ, such that

plimn→∞(bθn − θ ∗n) = 0 where the sequence {θ ∗n} is interior to Θ uniformly in n. Suppose

also that there exists a sequence of matrices Σ(θ ∗n) that are O(1) and uniformly positive defi-

nite such that

Σ
�
θ ∗n
�−1/2p

n
�bθn − θ ∗n

� L−→ N
�

0, Ip

�
(1)

as n→∞. The idea behind the Wald test principle (Wald, 1943) is to examine h(θ) at θ = bθn

and ascertain if bθn, which is a consistent estimate of the true parameter value, seems to satisfy

the constraint.

Let θ0 denote the true value of θ and suppose that h
�
θ0

�
= 0. A Taylor series applied to the

constraint function gives

h(bθn) = h(θ0) +
∂ h(θ0)

∂ θ
(bθn− θ0) + o(‖bθn− θ0‖)

and therefore
p

nh
�bθn

�
= H(θ0)

p
n
�bθn− θ0

�
+ op(1)

where H(θ) = ∂ h(θ)/∂ θ because
p

n‖bθn − θ0‖ = Op(1) by (1) applied with θ ∗n = θ0 ∀ n.

Thus, by an application of Cramér’s theorem and the delta method we have

�
H(θ0)Σ(θ0)H

′(θ0)
�−1/2p

nh
�bθ
� L−→ N

�
0, Ir

�
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underH0. Let

T = nh(θ)′ [H(θ)Σ(θ)H(θ)]−1 h(θ)
��
θ=bθn

.

Slutsky’s theorem and the continuos mapping theorem yield the result that underH0

T
L−→ T0 ∼ χ2 (r, 0)

and p0 can be approximated by Pr(χ2 (r, 0)> t).

Now consider a sequence of local alternativesH1n given by θ1n = θ0+ ζ/
p

n where ‖ζ‖ <∞

and h(θ1n) 6= 0. Then

h(bθn) = h(θ1n) +H(θ1n)(
bθn− θ1n) + o(‖bθn− θ1n‖)

and

h(θ1n) = H(θ0)

�
ζ
p

n

�
+ o(‖

ζ
p

n
‖) .

Since ‖H(θ1n)−H(θ0)‖ → 0 it follows from (1) with θ ∗n = θ1n that

�
H(θ0)Σ(θ0)H

′(θ0)
�−1/2p

nh(bθn) = λ+ Zn+ op(1)

where λ =
�

H(θ0)Σ(θ0)H
′(θ0)

�−1/2
H(θ0)ζ and Zn

L−→ N(0, Ir). From this we can conclude

that

T = (λ+ Zn)
′(λ+ Zn) + op(1) .

Hence underH1n

T
L−→ T1 ∼ χ2

�
r,γ
�

where γ = ‖λ‖2 = ζ′H ′(θ0)
�

H(θ0)Σ(θ0)H
′(θ0)

�−1
H(θ0)ζ and p1 can be approximated by

Pr(χ2
�

r,γ
�
≤ t).

Figure 1 illustrates both P–values, p0 and p1, when r = 4 and γ = 6. If the value T = t1

were to be observed then the evidence against H0 and in favour of H1n might be thought of

as being relatively weak because p0 is large and p1 is small, but if T = t2 then the evidence

against H0 and in favour of H1n could be regarded as being quite strong because p0 is small

and p1 correspondingly large.
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Figure 1: Graphical presentation of dual P–values p0 and p1.

The generic structure discussed in this example is applicable to least squares, quasi maximum

likelihood estimation and M-estimators. For a discussion of different conceptual frameworks

and regularity conditions that give rise to a consideration of Pitman drift (Pitman, 1979,

Chapter 7) and the type of scenario discussed here see, amongst others, White (1994).

The previous examples clearly indicate that it might be useful to modify the traditional sig-

nificance test by considering some kind of trade–off between the dual P–values, a trade–off

that amounts to using the conventional notions of both size and power directly in the data

analysis.

3 P–values and Tension

Generalizing slightly, let π0 be the a priori probability that the hypothesis H0 is true: that is,

we assume that H is a Bernoulli random variable with Pr(H = 0) = π0 and Pr(H = 1) =

1− π0 = π1, 0 < π0 < 1. Then T |H ∼ (1− H) · T0 + H · T1 and the marginal distribution of

T is given by the finite mixture π0F0+π1F1. Adopting a decision theory framework, suppose
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that the consequences of our actions are characterized by the losses given in Table 1 where li j

Table 1: Loss Table

Action

H = 0 H = 1

H = 0 l00 l01 State of

H = 1 l10 l11 the World

denotes the loss incurred from decidingH j obtains when in factHi holds, i, j = 0,1. The loss

incurred from making an incorrect decision is assumed to exceed that from making a correct

one, so the regrets r01 = l01 − l00 > 0 and r10 = l10 − l11 > 0. Consider a decision rule Ht(T )

of the form

Ht(T ) =





0, if T ≤ t;

1, if T > t.

We seek to determine Ht(T ) such that the Bayes risk

BR = π0[l00Pr(T0 ≤ t) + l01Pr(T0 > t)] +π1[l10Pr(T1 ≤ t) + l11Pr(T1 > t)]

is minimized. The solution is derived from a generalization of the Neyman-Pearson lemma and

is given in the following theorem, which incorporates this well known result in an unfamiliar

guise.

Theorem 1 Suppose that T1 = h(T0). Then h(t) is a continuous, increasing and differentiable

function of t and BR is minimized by setting t = t∗ in Ht(T ) where

f0(h
−1(t∗))|dh−1(t∗)/d t|

f0(t
∗)

= k =
π0r01

(1−π0)r10

.

Theorem 1 indicates how to partition T in such a way that the Bayes risk is minimized and we

now wish to developed a decision procedure based on Ht∗(T ) that uses the dual P–values p0

and p1. To this end, let α∗ = Pr(T ≥ t∗|H = 0) = Pr(T0 ≥ t∗) and β∗ = Pr(T < t∗|H = 1) =

Pr(T1 < t∗), and set

ρ∗ =
1− β∗

1−α∗ .

We will refer to ρ∗ as evidential tension. The nomenclature recognizes that ρ∗ is an increasing

function of α∗ and a decreasing function of β∗ and, ideally, we would like to make both error
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probabilities small. Since for a given sample size decreases in α∗ are matched by increases in

β∗, and visa–versa, ρ∗ can be viewed as measuring the relative balance between them.

To assess the optimal course of action given the data, we compare the observed evidential

tension with its theoretical equivalent and

acceptH0 and rejectH1 if
1− p1

1− p0

≥ ρ∗,

acceptH1 and rejectH0 if
1− p1

1− p0

< ρ∗ . (2)

The value of ρ∗ reflects the weight of evidence necessary to induce the decision maker to swap

actions between H = 0 and H = 1 and its empirical counterpart, (1− p1)/(1− p0), reflects the

evidential content of the data. The first inequality occurs if p0 > α
∗ and p1 < β

∗, and implies

that the weight of evidence is in favour ofH0 rather thanH1. The second inequality occurs if

p0 < α
∗ and p1 > β

∗, implying that there is sufficient evidence to reject the null in favour of

the alternative hypothesis. Following Moerkere et al (2006), we will call this a balanced test

as it balances p0 against p1 via the evidential tension, treating each on an equal footing.

The balanced test evaluates the data from the perspective of both H0 and H1 and the deci-

sion rule is perhaps most easily implemented and understood when couched in terms of the

evidential ratio

R∗01 =
ρ∗(1− p0)

(1− p1)
. (3)

For a given ρ∗, the ratio R∗01 increases as p0 decreases and p1 increases, so the larger is

R∗01 the more evidence there is in favour of H1 rather than H0. If p0 < α
∗ and p1 > β

∗

then R∗01 > 1 and the observed value of the test statistic implies that the evidence in the

data in favour of H1 rather than H0 is greater than that implicit in the value of ρ∗. Thus if

p0 is sufficiently small and p1 sufficiently large R∗01 will exceed unity and the decision rule

becomes:

H(R∗01) =





0, if R∗01 ≤ 1;

1, if R∗01 > 1.

Example 3: Let X = {Z1, . . . , Zn} × {Y1, . . . , Ym} where Zi are i.i.d. N(µ1,σ2) and are indepen-

dent of Yi i.i.d. N(µ2,σ2), so that X = Rn ×Rm and θ = (µ1,µ2,σ2). Assume that we wish

to testH0 : µ1 = µ2 versusH1 : µ1 6= µ2 with σ2 being unspecified. Then the likelihood ratio
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statistic is given by

λn,m =

� ν

ν + D2

�(ν+2)/2

where ν = n+m− 2 and D = (Z − Y )/σ,

σ2 =

�
1

n
+

1

m

� ∑n

i=1(Zi − Z)2+
∑n

i=1(Yi − Y )2

n+m− 2

!
.

The likelihood ratio λn,m is a monotonically decreasing function of T = D2 and the likelihood

ratio significance test is obviously equivalent to a significance test based on T .

The statistic T ∼ T0 = F(1,ν , 0) under H0 and the classical significance test amounts to the

F–test corresponding to a two–sided t–test. Under H1, T ∼ T1 = F(1,ν ,γ), γ = ν(|µ1 −

µ2|/σ)2. Let ∆ = (µ1 − µ2)/σ, the contrast measured in units of the standard error, and set

T ′ = (D −∆)2. Then T ′ ∼ T0 under H1 and T = (
p

T ′ + ∆)2. Applying Theorem 1 with

T1 = h(T0) = (
p

T0 +∆)
2 and

f0(t) =
Γ( ν+1

2
)

Γ( ν
2
)Γ(1/2)

(ν t)−1/2

(ν + t)(ν+1)/2

leads to the solution of
(ν + t∗)

(ν + (
p

t∗ −∆)2)
= k2/(ν+1) = c

for t∗. When c = k = 1 this gives t∗ =∆2/4, otherwise

t∗ =

�
c|∆| −

p
c∆2 − (1− c)2ν

�2

(1− c)2
.

Given an assigned value for ∆, based on the context plus knowledge and experience of the

problem at hand, it is now a straightforward matter to calculate t∗ and then ρ∗ and implement

a balanced F–test.

4 Operating Characteristics

In his discussion of frequentist inference and hypothesis testing, Welsh (1996, Section 3.4)

argues that the approach to hypothesis testing that now dominates much of the literature

is a hybrid of the Fisherian and Neyman-Pearson paradigms, made possible by use of the
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traditional P–value. From the above discussion it is clear that the balanced test can be viewed

similarly, a hybridization that uses the dual P–values. Given that our development has been

based upon the decision theoretic considerations associated with minimization of the Bayes

risk, it is perhaps natural at this point to turn to an investigation of the frequentist properties

of H(R∗01), following the rationale of Rubin (1984).

Consider the behaviour of H(R∗01) as a function of t, the observed value of the statistic T , and

t∗, the analytically derived value that determines the evidential tension ρ∗. If t ≤ t∗ then

p0 ≥ α∗ and p1 ≤ β∗, implying that

1− po

1−α∗ ≤ 1 and
1− β∗

1− p1

≤ 1

and hence thatR∗01 ≤ 1. If, on the other hand, t > t∗ then p0 < α
∗ and p1 > β

∗, which implies

that
1− po

1−α∗ > 1 and
1− β∗

1− p1

> 1

and hence that R∗01 > 1. It follows directly that

Pr(R∗01 > 1|H0) = Pr(t > t∗|H = 0)

= α∗ .

Lemma 1 The balanced test has size α∗ and is equivalent to a likelihood ratio test ofH0 versus

H1 based upon T and conducted at significance level α∗.

The critical value of the likelihood ratio test of Lemma 1, k, is determined by the prior odds

ratio π0/(1− π0) and the ratio of regrets (l01 − l00)/(l10 − l11) and these ultimately govern

the value of α∗ through k.

Lemma 1 suggests that the balanced test will inherit the desirable asymptotic (large sample)

properties of the likelihood ratio test, as discussed in Cox and Hinkley (1974, Section 9.3) for

example.
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Example 2 (Revisited): If H1 holds then h(θ 0) 6= 0 and

plim
n

h
�bθn

�′�
H(bθn)Σ(

bθn)H(
bθn)
�−1

h
�bθn

�o
> 0 .

It follows that under a fixed alternative the test statistic T diverges to ∞ as n → ∞. This

implies that with a fixed alternative p1 → 1 as n → ∞ and R∗01 → ∞. The test based on

H(R∗01) will be consistent.

Turning to the finite sample properties of the balanced test, note first that an immediate conse-

quence of Lemma 1 is that the probability of rejecting H0 when it is true will not exceed the

power, that is, the test is unbiased. In particular we have

α∗ = Pr(R∗01 > 1|H0)

≤ Pr(R∗01 > 1|H1)

= 1− Pr(R∗01 ≤ 1|H1)

= 1− Pr(t ≤ t∗|H = 1)

= 1− β∗ .

Since the decision rules H(R∗01) and Ht∗(T ) are equivalent it also follows from Theorem 1

that the balanced test is admissible (See Cox and Hinkley, 1974, pp. 431-433) . Admissibility

is a relatively weak property, however, and it does not appear to be possible to say anything

more general about the power of the balanced test analytically than is given in the following

result.

Corollary 1 The balanced test is a point optimal test, that is, it is equivalent to the most powerful

test of size α∗ for testing the simple nullH0 against the simple alternativeH1.

5 Applications

5.1 Regression Modeling

Suppose that we are interested in modeling a real valued stochastic process yt , t ∈ N using a

linear regression model where the regressors are chosen from the collection R = {x tk : k =
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1, . . . , N}, N ∈ N, of real-valued processes defined on the same probability space as yt . Here N

denotes the natural numbers (positive integers) and the variables inR are those deemed to be

appropriate for the analysis at hand. The problem of interest is to find the subset of regressors

that may be regarded as most important. In this case the set of relevant specifications contains

2N different models where under model Mρ the regressors {x t r(k) : k = 1, . . . , kr} enter

the regression equation, that is, ρ = {r(1), . . . , r(kr)} ⊆ {1, . . . , N} denotes the subset of

regressors in R that appear in the r ’th model r = 1, . . . , 2N .

A common approach to this problem is to consider the use of model selection criteria and

one of the earliest of these is the information criterion proposed by Akaike (1974). Writing

Akaike’s criterion as

−2 max(log likelihood) + 2(# estimated parameters) , (4)

we find that under Gaussian assumptions the criterion function for modelMρ becomes

AIC(Mρ) = n log bσ2
ρ + 2(kr + 1)

where nbσ2
ρ is the residual sum of squares achieved with that model, n being the sample size.

Let y = (y1, . . . , yn)
′ denote the n× 1 vector of observations on the dependent variable, or

regressand, and similarly define Xρ to be the n× kr observation matrix for the regressor set

for modelMρ with rows x′r t = (x t r(1), . . . , x t r(kr )
) for t = 1, . . . , n. In our case we can assume,

without loss of generality, that the regressors in R contain no redundancies, so that Xρ has

full column rank. Let Pρ = Xρ(X
′
ρXρ)

−1X′ρ denote the (prediction) operator that projects on

to the space spanned by the columns of Xρ and Rρ = In−Pρ the associated (residual) operator

which projects on to the orthogonal complement of that space. Then nbσ2
ρ = ‖Rρy‖2, where

for x ∈ Rn ‖x‖2 = x′x.

The criterion is implemented by choosing the model Mρ = ÓMAI C such that for all r =

1, . . . , 2N , AIC( ÓMAI C) ≤ AIC(Mρ), and since the introduction of model selection criteria of

this type an extensive literature has been built up concerning their empirical and theoretical

behaviour, see, inter alia, McQuarrie and Tsai (1998). From a heuristic viewpoint, it is appar-

ent from 4 that ÓMAI C coincides with the model that is not rejected when tested against all

other candidate models – using a test based on the likelihood ratio statistic with a critical value
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determined by the value of the penalty term. In the light of Lemma 1 it seems reasonable to

think that AIC might admit an interpretation via balanced hypothesis testing.

Consider adding the regressor x t i, where i /∈ {r(1), . . . , r(kr)}, to the model Mρ. Set w =

Rρ(x1i, . . . , xni)
′ and let M{ρ∪i} denote the model containing the regressors {x t r(k) : k =

1, . . . , kr} and x t i. Using the Frisch-Waugh-Lovell theorem it is straightforward to show that

the mean squared residual ofM{ρ∪i} is given by

bσ2
{ρ∪i} = bσ2

ρ − (w
′y)2/n(w′w)

= bσ2
ρ


1+

τ2
ρ(w)

(n− kr − 1)



−1

(5)

where

τ2
ρ(w) =

(n− kr − 1)(w′y)2

nbσ2
{ρ∪i}(w

′w)
=

�
(w′y)

(w′w)

�2

 nbσ2

{ρ∪i}
(n− kr − 1)(w′w)



−1

,

the square of the t-statistic for testing the significance of the regressor x t i. Substituting ex-

pression 5 into AIC(M{ρ∪i}) it is readily deduced that AIC(M{ρ∪i}) ≤ AIC(Mρ) if and only

if

−n log[1+
τ2
ρ(w)

(n− kr − 1)
] + 2≤ 0 .

ThusM{ρ∪i} will be preferred toMρ whenever

τ2
ρ(w)≥ (n− kr − 1)[exp(2/n)− 1] .

Now let β denote the regression coefficient in the regression of yt on wt and set

t∗AI C = (n− kr − 1)[exp(2/n)− 1] .

Under the null hypothesis that y is orthogonal to w, i.e. H0 : β = 0, T = τ2
ρ(w) ∼ T0 =

F(1, (n − kr − 1), 0). From a direct adaptation of the arguments employed in Example 3 it

follows that

α∗AI C = Pr(T0 ≥ t∗AI C)

= Pr(F(1, (n− kr − 1), 0)≥ (n− kr − 1)[exp(2/n)− 1])
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implicitly defines the significance level of a balanced F -test of H0 : β = 0 against the alterna-

tive H1 : β =∆AI Cσ where ∆AI C = 2
p

t∗AI C and

σ2 = nbσ2
{ρ∪i}/(n− kr − 1)(w′w) .

This establishes the relationship between AIC and the concepts used in the construction of

a balanced hypothesis test. It indicates that AIC corresponds to a point optimal test of H0 :

β = 0 where the implicit value of β under the alternative and the implied size of the test are

functions of the standard error, n and kr (Corollary 1).

Figures 2 and 3 present graphs of α∗AI C and ∆AI C for different values of n and kr . The figures

also plot corresponding values for BIC (Schwarz, 1978) and HQ (Hannan and Quinn, 1979)

where, via developments that parallel those employed above, α∗BI C = Pr(F(1, (n−kr−1), 0)≥

t∗BI C) and ∆BI C = 2
p

t∗BI C with

t∗BI C = (n− kr − 1)[n1/n − 1] ,

and α∗HQ = Pr(F(1, (n− kr − 1), 0)≥ t∗HQ) and ∆HQ = 2
p

t∗HQ with

t∗HQ = (n− kr − 1)[(log n)2/n− 1] .

Figures 2a and 3a indicate that for a broad range of values of kr and n the implicit size of AIC

falls roughly in the interval 30% to 16%. This is in accord with observations made by Sawa

(1978). For BIC , however, α∗ lies in the interval 16% to 1.25%, and the implied size of HQ

falls about half way between that of AIC and BIC . For the sample sizes considered here the

values of α∗ implicit under AIC are much larger than conventional significance levels and only

BIC and HQ generate values for their implied size that resemble the type of significance levels

commonly used in practice. In fact, whereas both t∗BI C and t∗HQ diverge as n → ∞, so α∗BI C

and α∗HQ converge to zero asymptotically, t∗AI C → 2 as n → ∞ and α∗AI C approaches 0.1573.

Although both α∗BI C → 0 and α∗HQ → 0 as n → ∞, there are still notable differences in the

implied sizes over the range of sample sizes illustrated.

In a discussion of the relationship of model selection criteria to the general-to-specific (Gets)

least squares modeling strategy Campos et al. (2003) use the link between significance tests
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Figure 2: Regression Modeling Balanced Hypothesis Tests, kr = 5.
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and selection criteria to argue that Gets will be consistent. The assigned significance levels

used in the Gets liberal (GetsL) and conservative (GetsC) strategies are also plotted in Fig-

ures 2a and 3a. These are based on conventional significance levels and decrease in discrete

steps at designated sample sizes. If we denote the GetsL and GetsC assigned significance

levels by α∗L and α∗C , respectively, then the size profiles indicate that whereas GetsL tends to

lie between BIC and HQ with α∗BI C ≤ α∗L ≤ α∗HQ for n sufficiently large, GetsC falls below all

three information criteria for all n. Both Gets values are noticeably smaller than those of the

information criteria when n is small, suggesting that they will behave very differently from

the information criteria in small samples. As n increases however, GetsL and HQ converge,

and α∗BI C −α∗C → 0.

Each criterion seeks to balance the chances of omitting regressors that matter against includ-

ing variables which are irrelevant and the implied alternative provides a simple characteri-

zation of how this is done. For GetsL and GetsC , given α∗L and α∗C , we can calculate the

implied values of t∗L and t∗C as the (1− α∗L)100% and (1− α∗C)100% percentile points of the

F(1, (n− kr − 1), 0) distribution. The implied alternatives in units of the standard error are

then ∆L = 2
p

t∗L and ∆C = 2
p

t∗C . The values of ∆L and ∆C are plotted in Figures 2b and

3b. From Figures 2b and 3b we can see that AIC is balancing the null of zero against an

implied alternative that never exceeds 2
p

2 standard errors. For HQ and GetsL, however, ∆

converges to about 2
p

4 when n= 500 and for BIC and GetsC ∆ converges to about 2
p

6 at

this sample size. Each procedure can be interpreted as conducting a balanced hypothesis test

and therefore each one corresponds to a point optimal test, but they are implicitly balancing

the null against different values of the alternative. The larger the value under the implied

alternative the more stringent the procedure and the more parsimonious the model chosen by

that procedure is likely to be.

5.2 Protein Markers in Mass Spectroscopy

During the last few years there has been much interest in the use of mass spectroscopy as a

tool for discrimination and screening of cancer patients. The data is collected using a surface-

enhanced laser desorption/ionization system (Thiele, 2003; Banks, 2003) and consists of the

proteomic spectrum of individual patients. Each spectrum gives the relative amplitude mea-

sured on a grid of mass/charge (µz) values that represent protein markers, only some of which
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Figure 3: Regression Modeling Balanced Hypothesis Tests, kr = 15.
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Test procedure Ovarian cancer Prostate cancer

F - test 4907 27117

bF–test 3451 22741

Total # µz values 15154 48538

Table 2: Number of significant protein markers

are thought to be important in diagnosing the decease. The preliminary stage of any analysis

therefore consists of the identification of significant markers, see Petricoin et al. (2002) and

Zhu et al. (2003) for examples of the analysis of ovarian cancer patients, and Adam et al.

(2003) for prostate cancer patients.

Here we consider both ovarian cancer and prostate cancer data sets. The ovarian cancer data

set contains the spectra of 100 ovarian cancer patients and 116 healthy controls (including

16 individuals with benign tumors), with each spectrum evaluated at 15154 µz values. The

prostate cancer data set contains the spectra of 324 individuals, 167 of whom have prostate

cancer and 157 of whom are healthy individuals (including 77 individuals with benign tu-

mors). Here each spectrum is evaluated at 48538 µz values. (The ovarian cancer data set was

downloaded from clinicalproteomics.steem.com and the prostate cancer data set from

www.evms.edu/vpc/seldi/.)

The raw data sets have far more µz values (variables) than individuals (observations), but

many of the µz values may represent protein markers that are uninformative. We therefore

wish to consider testing the significance of the µz values or markers. Let µ1−µ2 be the mean

difference between the relative amplitudes of the spectra of the healthy individuals and the

spectra of the cancer patients for a specific marker. Then the null and alternative hypotheses

of interest are H0 : µ1 = µ2 versus H1 : µ1 6= µ2 and we can consider testing H0 against H1

using a classical F–test and a balanced F–test (bF–test), as previously described in Example

3.

For each data set we have two samples, n= 100 cancer patients and m = 116 normal individu-

als for the ovarian cancer data, and n = 167 cancer patients and m = 157 normal individuals

for the prostate cancer data, and we have carried out an F–test and a bF–test at each µz

value. For the F–test the level of significance was fixed at α = 0.01. The balanced test was

calculated by assigning the value ∆= 6 to the contrast parameter and assuming that the null

and alternative hypotheses were equally likely a priori and r10 = r01, so that k = 1. Table
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(2) shows the number of µz values for which the null hypothesis is rejected. The balanced

test has clearly nominated considerably fewer µz values as representing significant protein

markers than the traditional F–test.

Finally, Table (2) has been constructed by conducting a large number of identical tests,

h = 15154 for the ovarian cancer data and h = 48538 for the prostate cancer data. When

many tests are being performed it is commonly suggested that the overall probability of mak-

ing a false discovery should be controlled to account for the multiple testing. Controlling the

family–wise error rate is known to lead to procedures that lack power, however, an unfortu-

nate feature since, as here, we envisage using the test in an exploratory analysis in which

interest is focused on finding significant results among many applications of the test. Fol-

lowing the pioneering work of Benjamini and Hochberg (1995) a number of authors have

therefore suggested that, in such circumstances, an important operating characteristic of the

test to examine is the rate of false positives.

Suppose that h identical hypothesis tests are performed with the statistics T1, ..., Th. Let R

denote the total number of hypotheses that are rejected and let V be the number of true null

hypotheses that are erroneously rejected. Storey (2003) defines the positive false discovery

rate (pFDR) to be the expected proportion of false discoveries, conditional on at least one

positive finding having occurred,

pF DR = E

�
V

R
|R> 0

�
.

Assume that (Hi, Ti , ) are i.i.d. random variables where Hi is Bernoulli(1− π0) and Ti |Hi ∼

(1−Hi) · T0 +Hi · T1, for i = 1, . . . ,h. Then (Storey, 2003, Theorem 1)

pF DR =
π0Pr(T0 > t′)

π0Pr(T0 > t′)+ (1−π0)Pr(T1 > t′)
=

π0α
′

π0α
′ + (1−π0)(1− β ′)

where t′ is the critical value used in the application of the tests, and α′ and β ′ are the corre-

sponding error rates. Evaluating pF DR for the two tests using the parameter values previously

assigned leads to the conclusion that the conventional F–test is at least 3.6 times more likely

to indicate a false positive than is the balanced version.
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Appendix: Proofs

Proof Theorem 1: By assumption F0(t) = F1(h(t)) and T1 is stochastically larger than T0, so

h(t) ≥ t. If t > t′ then

F0(t) > F0(t
′)≡ F1(h(t))> F1(h(t

′))⇒ h(t) > h(t′) .

Moreover,

F0(t)− F0(t
′)≡ F1(h(t))− F1(h(t

′)) = f1(h̄)(h(t)− h(t′))

where h̄ = h(t′) + τ(h(t)− h(t′)), 0 ≤ τ ≤ 1, implying that h(t)− h(t′)→ 0 as t → t′ since

f1(h̄)> 0 and F0(t) is continuous. It is now straightforward to verify that

lim
t→t ′

h(t)− h(t′)

t − t′
=

f0(t)

f1(h(t))
,

completing the proof of the first part of the theorem.

Applying a direct generalization of the Neyman-Pearson lemma, Rao (1965, Section 7a.2,

Lemma 4) it follows that BR is minimized by the decision rule that sets H = 0 if f1(t)≤ k f0(t)

and H = 1 otherwise. Let Bk = {t : f1(t) > k f0(t)}. Assume that k ≥ 1 and suppose that

[0, t∗)⊆ Bk where f1(t
∗) = k f0(t

∗). Then F1(t)> kF0(t) ≥ F0(t) and 1−F1(t) ≤ 1−F0(t) for

all t ∈ [0, t∗), contradicting the assumption that T1 is stochastically larger than T0. Similarly,

assuming k < 1 and [t∗,∞) * Bk implies that 1− F1(t) ≤ k(1− F0(t)) < 1− F0(t) for all

t ∈ [t∗,∞), leading to the same contradiction. Thus we can conclude that [t∗,∞) = Bk and

the final statement of the theorem follows by noting that

f1(t) =
f0(h
−1(t))

|dh(t)/d t| = f0(h
−1(t))|dh−1(t)/d t| .

Proof Lemma 1: From the discussion preceding the lemma we can see that H(R∗01) is equiv-

alent to Ht∗(T ) where f1(t
∗) = k f0(t

∗), k = {π0/(1−π0)}{(l01 − l00)/(l10− l11)}, and, as we

have just shown, [t∗,∞) = Bk = {t : f1(t) > k f0(t)}. Hence H(R∗01) is equivalent to the like-

lihood ratio test based on T with critical region Bk and Pr(Bk|H0) = Pr(t > t∗|H = 0) = α∗.

Conversely, for any k > 0 the set Bk defines a likelihood ratio critical region of size α∗. More-

over, we can always find a prior probability π0 and regrets r01 = l01 − l00 and r10 = l10 − l11

such that π0r01 = k(1− π0)r10 and the likelihood ratio test is equivalent to Ht∗(T ) and the
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corresponding H(R∗01).
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