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ABSTRACT
There is growing interest to discover suitable calcium containing oxides that can be used as electrode materials in calcium ion batteries. A
comprehensive computational investigation of ionic defects and Ca-ion diffusion in Ca-bearing oxide materials at the atomic level is important
so as to predict their suitability for use in Ca-ion batteries. In this study, we apply atomistic simulation techniques to examine the energetics of
defects, dopants, and Ca-ion diffusion in Ca3Fe2Si3O12. The calculations suggest that the Ca/Fe anti-site defect is the most favorable intrinsic
defect causing such significant disorder, which would be sensitive to synthesis conditions. Diffusion of Ca2+ ions within Ca3Fe2Si3O12 is three-
dimensional, with the activation energy of migration of 2.63 eV inferring slow ionic conductivity. The most favorable isovalent defects are
Mn2+, Sc3+, and Ge4+ on Ca, Fe, and Si, respectively, for this process. The formation of extra calcium was considered to increase the capacity
and diffusion of Ca in this material. It is found that Al3+ and Mn2+ are the candidate dopants on the Si and Fe sites, respectively, for this
process and there is a reduction observed in the activation energies. The electronic structures of favorable dopant configurations are discussed
using density functional theory simulations.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0012594., s

I. INTRODUCTION

Although lithium-ion batteries have dominated for years,1–4

calcium-ion batteries (CIBs) are gaining attraction for large-scale
storage applications due to cost, abundance, and enhanced safety.5,6

Compared to other multivalent battery systems such as Mg-ion bat-
teries,7,8 the research activity of CIBs is in the early stage. CIBs are
also expected to provide high energy and power density due to their
two-electron reaction during intercalation. Furthermore, the elec-
trode potential of Ca/Ca2+ is lower by 0.5 eV than that of Mg/Mg2+

and higher only by 0.1 eV than that of Li/Li+, implying higher cell
voltage.9

Identification of suitable electrode materials is important in
the development of CIBs. There are only a few published stud-
ies on electrode materials including layered compounds (e.g.,
V2O5),10 chevrel phases [e.g., CaMo6X8 (X = S, Se, and Te)],11 and
Prussian blue analogs [e.g., NaMnFe(CN)6]9 for CIBs. Arroyo-de

Dompablo et al.12 recently carried out a joint experimental and the-
oretical study on CaMn2O4 polymorphs and concluded that full Ca
extraction from these polymorphs introduces a substantial volume
change with an average voltage of 3.1 V and a high Ca-ion migra-
tion barrier. In a recent theoretical study, Torres et al.13 considered a
few Ca based minerals including Ca3Mn2(SiO4)3, CaMn(SiO3)2, and
CaMn(CO3)2 to calculate their diffusion barriers, average voltages,
and volume changes over Ca de-insertion.

Materials consisting of iron with structures formed by linking
through polyhedral units such as PO4, SiO4, and SO4, to provide
structural stability, are of considerable interest in the development
of electrode materials.14–16 Andradite (Ca3Fe2Si3O12)17 is a rock-
forming silicate garnet and consists of three Ca2+ ions per formula
unit, leading to high theoretical capacity, and SiO4

4− units offering
structural stability via strong Si–O bonds. Furthermore, the low cost
and availability of iron and silicon coupled with their non-toxicity
also make this material ideal.
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Computer modeling techniques based on pair-wise potentials
are powerful tools to predict and understand the defects, ion trans-
port, and dopant properties in solid-state oxide materials. A variety
of oxide materials including battery materials have been examined
using this technique.18–22 In the present study, using inter-atomic
pair potentials, we characterize the defect, diffusion, and dopant
properties of Ca3Fe2Si3O12 on an atomistic level. Furthermore, den-
sity functional theory (DFT) allowed us to study the electronic
structures of doped configurations.

II. COMPUTATIONAL METHODS
Defect, diffusion, and dopant calculations were performed

using the classical pair potential method as implemented in the
GULP code,23 which describes ionic interactions in the form
of long-range Coulomb attractions and short-range attractions
(electron–electron repulsion and attractive dispersion). Buckingham
potentials (refer to Table S1) were used to describe short-range inter-
actions. Cell parameters and ionic positions were relaxed using the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.24 Defects
were modeled using the Mott–Littleton method.25 Ca-ion migra-
tion was calculated by considering two adjacent Ca vacancy sites
as initial and final configurations. Seven interstitial Ca ions were
considered in a direct linear route, and they were allowed to relax.
The difference between the vacancy formation energy and the max-
imum energy along the diffusion path is defined as the activation
energy of migration. Relative energies and trends will be consistent
although the present model assumes that ions are fully charged and
defect concentrations are at a dilute limit. Thermodynamically, the
defect parameters (i.e., migration energies) can be defined through
the comparison of the defective crystal to an isobaric (or isochoric)
non-defective crystal. These defect formation parameters are inter-
linked by thermodynamic relations.26,27 The present calculations
correspond to the isobaric parameters for the formation and the
migration processes.28,29

Electronic structure calculations are based on DFT using plane
wave basis sets and projected augmented wave (PAW) poten-
tials. A plane wave DFT code VASP (Vienna Ab initio Simula-
tion Package)30 which diagonalizes the Kohn–Sham equations was
used. The calculations were performed using the generalized gra-
dient approximation (GGA) as proposed by Perdew, Burke, and
Ernzerhof (PBE).31 In all cases, a plane wave basis set with a cut-
off of 500 eV and a 2 × 2 × 2 Monkhorst and Pack32 k-point
mesh were used. Energy minimization calculations were performed
using the conjugate gradient (CG) algorithm33 and a force toler-
ance value of 0.001 eV/Å. Short-range attractive interactions (disper-
sion) were modeled using a DFT + D3 method as implemented by
Grimme et al.34

III. RESULTS AND DISCUSSION
A. Crystal structure of Ca3Fe2Si3O12

The crystal structure of Ca3Fe2Si3O12 at room temperature is
cubic (space group Ia3d, no. 230).17 Experimental lattice parame-
ters reported by Novak and Gibbs.17 are a = b = c = 12.058 Å, α
= β = γ = 90○, and V = 1753.18 Å3. An eight-fold coordination is

FIG. 1. Crystal structure of Ca3Fe2Si3O12.17

observed for Ca2+ cations. The Fe2+ ions reside in the FeO6 octahe-
dra. Tetrahedral (SiO4) units share their corners with FeO6 units in
a three-dimensional network, as shown in Fig. 1. Energy minimiza-
tion calculation was performed to relax both ionic positions and cell
dimensions in order to obtain equilibrium lattice parameters. The
results allowed us to check the quality of the Buckingham poten-
tials used in the classical simulation and pseudopotentials together
with basis sets used in the DFT simulation. There is good agreement
between calculated and experimental values (refer to Table I).

B. Intrinsic atomic defects
Diffusion of ions in an ionic material is typically influenced by

Schottky and Frenkel disorders, which can be calculated by com-
bining point defects (vacancies and interstitials). These point defect

TABLE I. Calculated and experimental parameters of Ca3Fe2Si3O12.

Calculated |∆| (%)

Parameter Force field DFT Experiment17 Force field DFT

a (Å) 12.061 0.02
b (Å) 12.090 12.064 12.058 0.27 0.05
c (Å) 12.066 0.07

α (deg) 90.21 0.23
β (deg) 90.00 90.05 90.00 0.00 0.06
γ (deg) 89.96 0.04

V (Å3) 1767.20 1755.55 1753.18 0.80 0.14
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FIG. 2. Reaction enthalpies calculated for different defect processes.

energies can be difficult to determine via experimentation. The cur-
rent classical simulation technique allowed us to calculate a series
of point defects. The lowest energy point defects were then com-
bined to calculate Frenkel and Schottky defect processes. Anti-site
defects in which cations exchange their positions were also calcu-
lated as these defects have been observed in many oxide materials
both experimentally and theoretically.35–40 Here, we write reaction
equations for all possible Schottky, Frenkel, and anti-site defects in
Ca3Fe2Si3O12 using the Kröger–Vink notation,41

Ca Frenkel : CaX
Ca → V′′Ca + Ca⋅⋅i , (1)

Fe Frenkel : FeX
Fe → V′′′Fe + Fe⋅⋅⋅i , (2)

Si Frenkel : SiX
Si → V′′′′Si + Si⋅⋅⋅⋅i , (3)

O Frenkel : OX
O → V ⋅⋅O + O′′i , (4)

Schottky : 3CaX
Ca + 2FeX

Fe + 3SiX
Si + 12OX

O → 3V′′Ca + 2V′′′Fe

+ 3V′′′′Si + 12V ⋅⋅O + Ca3Fe2Si3O12, (5)

CaO Schottky : CaX
Ca + OX

O → V′′Ca + V ⋅⋅O + CaO, (6)

Fe2O3 Schottky : 2FeX
Fe + 3OX

O → 2V′′Fe + 3V ⋅⋅O + Fe2O3, (7)

SiO2 Schottky : SiX
Si + 2OX

O → V′′′′Si + 2V ⋅⋅O + SiO2, (8)

Ca/Fe antisite (isolated) : CaX
Ca + FeX

Fe → Ca′Ca + Fe⋅Ca, (9)

Ca/Fe antisite (cluster) : CaX
Ca + FeX

Fe → {Ca′Fe : Fe⋅Ca}
X, (10)

Ca/Si antisite (isolated) : CaX
Ca + SiX

Si → Ca′′Si + Si⋅⋅Ca, (11)

Ca/Si antisite (cluster) : CaX
Ca + SiX

Si → {Ca′′Si : Si⋅⋅Ca}
X, (12)

Fe/Si antisite (isolated) : FeX
Fe + SiX

Si → Fe′Si + Si⋅Fe, (13)

Fe/Si antisite (cluster) : FeX
Fe + SiX

Si → {Fe′Si : Si⋅Fe}
X. (14)

Figure 2 shows the resulting defect energies. The most favor-
able intrinsic disorder type is the Ca–Fe anti-site defect cluster
(0.83 eV/defect). In this defect process, it is anticipated that there
would be some Ca2+ ions on the Fe site and Fe3+ ions on the Ca
site. In the isolated form of the anti-site defect, defects were modeled
individually, and their energies were combined. Both defects were
considered simultaneously in the cluster form. The energy difference
between the isolated and cluster forms is considered as the binding
energy (−0.19 eV). Notably, other anti-site defect cluster energies
(Ca–Si and Fe–Si) are lower than the Schottky and Frenkel defect
energies. Among other defect processes, the CaO Schottky is the
lowest energy process, with a defect energy of 3.73 eV/defect. This
process will facilitate the formation of V′′Ca and V ⋅⋅O at high tempera-
tures. The oxygen Frenkel energy is calculated to be 3.98 eV/defect,
with a deviation of only 0.25 eV from the CaO Schottky. However,
the Ca Frenkel energy is calculated to be ∼5.00 eV, inferring that
the formation of Ca vacancies is not significant. Other Frenkel and
Schottky energies are highly endoergic, suggesting that they will not
be present at significant concentrations.

FIG. 3. (a) Long range Ca-ion diffusion
pathways and (b) the energy profile dia-
gram showing the activation energy.
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C. Self-diffusion of Ca2+ ions
The diffusion of Ca2+ ions is discussed in this section. A mate-

rial with high ionic conductivity generally exhibits a high rate per-
formance and is suitable as an electrode for use in devices such
as batteries. Classical simulation allowed us to calculate the Ca-
ion diffusion pathways and the corresponding activation energies
in Ca3Fe2Si3O12. In general, diffusion pathways are difficult to
examine in the experiment, particularly for complex oxides such
as Ca3Fe2Si3O12. The current classical simulation technique has
been successfully applied in previous studies to calculate ion migra-
tion pathways together with activation energies.42,43 For exam-
ple, the Li-ion migration pathway calculated in LiFePO4 by Fisher
et al.44 was in excellent agreement with the neutron diffraction
experiment.45

A potential Ca–Ca hop with a jump distance of 3.70 Å was iden-
tified. Many of these identical hops were then connected to form
a three-dimensional long-range migration path, as shown in Fig. 3.
The activation energy for this hop is calculated to be 2.63 eV, and Ca-
ions migrate in a curved pathway. High activation energy of Ca2+ ion
migration in Ca3Fe2Si3O12 shows that the Ca-ion diffusion is slow
in this material. A possible solution to increase the ion diffusion
is by reducing the Ca–Ca distance in this material via synthesiz-
ing nanoparticles.46 Table II lists the activation energies calculated
for Ca-ion migration in different Ca-based oxide materials.12,13,47

Torres et al.13 recently performed DFT calculations on a variety of
Ca based minerals and reported the activation energies of Ca-ion
migration. Interestingly, Ca3Cr2Si3O12 and Ca3Mn2Si3O12 materi-
als, isostructural with Ca3Fe2Si3O12, were also considered, and their
activation energies of migration were reported to be 2.07 eV and
2.09 eV, respectively.13 Activation energies calculated for Ca-ion
migration are lower by ∼0.50 eV than those calculated in a simi-
lar Ca3Fe2Si3O12 structure. This is due to different methodologies
considered and different transition elements present in the crystal
structures. Activation energies are greater than 2 eV in all cases,
inferring poor ionic conductivity. A possible reason can be due to the
strong electrostatic interaction between the migrating Ca2+ cations
and the other ions in the lattice.

D. Solution of dopants
This section examines the introduction of cations via diva-

lent, trivalent, and tetravalent doping into Ca3Fe2Si3O12. Doping can
result in beneficial or detrimental effects on the material. In partic-
ular, suitable dopants can stabilize a material in order to prevent

TABLE II. Activation energies calculated for Ca-ion migration in Ca containing
materials.

Ca-based oxide material Activation energy (eV)

CaFeSi2O6 4.3647

Ca3Mn2Si3O12 2.0913

CaMnSi2O6 4.6013

Ca3Cr2Si3O12 2.0713

Ca11Mn12C24O72 2.8013

CaMn2O4 1.0012

unfavorable phase transformations. The aim here is to provide
guidance to the dopants that require the least energy to integrate
into the lattice, the effects of which can be studied in subsequent
experimental testing.

FIG. 4. Solution enthalpies calculated for (a) divalent, (b) trivalent, and (c)
tetravalent dopants on the Ca, Fe, and Si sites, respectively.
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1. Divalent dopants
Divalent cations (M = Ni, Mg, Co, Mn, Sr, and Ba) were first

considered for doping on the Ca site. The doping mechanism can be
seen in the following equation:

MO + CaX
Ca →MX

Ca + CaO. (15)

The calculated solution enthalpies are reported in Fig. 4. The lowest
solution enthalpy (0.21 eV) is predicted for Mn2+, inferring the high-
est solubility. The lowest solution enthalpy suggests that Mn2+ would
be an ideal candidate to stabilize Ca3Fe2Si3O12. The ionic radius of
Ca2+ in an eight coordination environment is 1.00 Å. Favorability
of the Mn2+ dopant can be due to its ionic radius (0.96 Å), which is
close to the ionic radius of the Ca2+ ion. Both Mg2+ and Co2+ exhibit
an identical solution enthalpy of 0.59 eV. This is due to a very small
difference in their ionic radii. Solution enthalpy increases with the
difference in the ionic radius between dopants and the Ca2+ ion. The
solution enthalpies of Sr2+ and Ni2+ were calculated to be 0.64 eV
and 0.77 eV, respectively. The highest solution enthalpy of 2.20 eV
is calculated for Ba2+, suggesting that this dopant is very unfavorable
for doping on the Ca site.

To increase the capacity of Ca3Fe2Si3O12, divalent dopants were
considered on the Fe site. The following reaction equation [Eq. (16)]
shows that this doping strategy can introduce additional Ca2+ ions
in the form of Ca interstitials in the lattice. A previous experimental
study considered Co3+ doping on the Ru site in Li2RuO3 to increase
the Li+ concentration, and doping resulted in an enhancement in the
electrochemical reversibility of Li+ ions and the concentration of Li+

ions in the lattice,48

2MO + 2FeX
Fe + CaO→ 2M′Fe + Ca⋅⋅i + Fe2O3. (16)

The favorable dopant for this process is Mn2+, and its solution
energy is calculated to be 3.36 eV. Solution energies calculated for
Co2+, Ni2+, Mg2+, and Zn2+ are very close to the value calculated for
Mn2+; therefore, they are also candidate dopants for experimental
testing (refer to Fig. 5). The ionic radius of Fe3+ is 0.65 Å. Favora-
bility of the five dopants (Mn, Co, Ni, Mg, and Zn) is due to their

ionic radii (0.65 Å–0.74 Å) matching closely with the ionic radius of
Fe3+. The ionic radius of Sr2+ (1.18 Å) deviates significantly from that
of Fe3+, reflecting in solution enthalpy. The highest positive solution
enthalpy of 6.17 eV is calculated for Ba2+, suggesting that this dopant
is highly unfavorable on the Fe site.

2. Trivalent dopants
Here, we consider a range of trivalent cations (M = Al, Ga, In,

Sc, Y, Gd, and La) on the Fe and Si sites. Doping on the Fe site pro-
duced no charge compensating defects as the charge on Fe is +3
[refer to Eq. (17)]. Solution enthalpies are plotted as a function of
ionic radii of dopants in Fig. 4(b),

M2O3 + 2FeX
Fe → 2MX

Fe + Fe2O3. (17)

The most favorable dopant is Sc3+, with a solution enthalpy of
0.09 eV. The solution enthalpy of In3+ is higher only by 0.02 eV
than that calculated for Sc3+, meaning that In3+ is also a promising
dopant. Favorability of these two dopants can be partly due to their
ionic radii being closer to the ionic radius of Fe3+ (0.65 Å). The solu-
tion enthalpy of Ga3+ is 0.29 eV although its ionic radius (0.62 Å)
is very close to the ionic radius of Fe3+. Other dopants exhibit high
solution enthalpies due to their ionic radii deviating from the ionic
radius of Fe3+ [refer to Fig. 4(b)].

The formation of additional Ca2+ ions in the lattice was con-
sidered by doping trivalent cations on the Si site. As we discussed
earlier, this process can also introduce Ca interstitials, as shown in
the following reaction,

M2O3 + 2SiX
Si + CaO→ 2M′Si + Ca⋅⋅i + 2SiO2. (18)

The solution enthalpies are reported in Fig. 5(b). In all cases, solution
enthalpies are highly positive (>5 eV), suggesting that this process
required high energy possibly in the form of heat. The most favor-
able dopant is Al3+, with a solution enthalpy of 5.49 eV. The lowest
solution enthalpy for Al3+ can be due to its ionic radius (0.39 Å)
being closer to the ionic radius of Si4+ (0.26 Å). High endoergic
solution enthalpy for this mechanism can be due to the high defect
formation energy of quadruply charged Si.

FIG. 5. Solution enthalpies calculated for (a) divalent and (b) trivalent dopants on the Fe and Si sites, respectively.
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FIG. 6. Energy profile diagrams for the Ca local hops in the presence of (a) Mn2+ on the Fe site and (b) Al3+ on the Si site (refer to Fig. 3).

3. Tetravalent dopants

Finally, tetravalent dopants (M = Ge, Ti, Sn, Zr, and Ce)
were considered on the Si site. Solution enthalpies are reported in

Fig. 4(c). The following defect equation explains the mechanism
involved in this process,

MO2 + SiX
Si →MX

Si + SiO2. (19)

FIG. 7. (a) DOS plot of bulk Ca3Fe2Si3O12, (b) the DOS plot of Mn-doped Ca3Fe2Si3O12, (c) the atomic DOS plot of Mn, (d) the optimized MnO8 unit with bond distance, (e)
the constant charge density plot of Mn-doped Ca3Fe2Si3O12, (f) the DOS plot of Sc-doped Ca3Fe2Si3O12, (g) the atomic DOS plot of Sc, (h) the optimized ScO6 unit with
bond distance, (i) the constant charge density plot of Sc-doped Ca3Fe2Si3O12, (j) the DOS plot of Ge-doped Ca3Fe2Si3O12, (k) the atomic DOS plot of Ge, (l) the optimized
GeO4 unit with bond distance, and (m) the constant charge density plot of Ge-doped Ca3Fe2Si3O12.
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The most favorable solution energy (0.43 eV) is calculated for Ge4+.
This is due to the ionic radius of Ge4+ (0.39 Å) being closer to that of
Si4+ (0.26 Å). The solution enthalpy for Ti4+ is 3.86 eV, meaning that
it is an unfavorable dopant. The second favorable dopant is Sn4+,
with a solution enthalpy of 2.10 eV. Solution enthalpy gradually
increases with an increase in the ionic radius. The highest enthalpy
of solution for Ce4+ (4.12 eV) suggests that doping would require
external heat energy.

E. Ca-diffusion in the presence of dopants
Here, we calculate the activation energies for Ca-ion diffusion

in the presence of Mn2+ on the Fe site and Al3+ on the Si site. Fig-
ure 6 shows the energy profile diagrams for the local Ca hops. There
is a reduction (by 0.45 eV) in the activation energy for the doping
of Mn2+ on the Fe site [refer to Fig. 6(a)]. In the case of doping
of Al3+ on the Si site, activation energy is reduced only by 0.09 eV
[refer to Fig. 6(b)]. In both cases, Ca–Ca distances have been slightly
elongated compared to the distances present in the un-doped crys-
tal structure. This perturbation in distances is due to the charge and
ionic radius mismatch between Mn2+ and Fe3+ and Al3+ and Si4+.
The current simulation shows that doping of Mn2+ and Al3+ would
simultaneously increase the concentration of Ca2+ ions in the lattice
and reduce the activation energy of the Ca-ion migration.

F. Electronic structure of doped Ca3Fe2Si3O12

DFT simulations were used to examine the electronic structures
of doped configurations. Here, we discuss the results of the most
favorable dopants (Mn2+, Ga3+, Al3+, and Ge4+), as discussed in the
previous sections.

The DOS plot calculated for bulk Ca3Fe2Si3O12 is shown
in Fig. 6(a). Metallic behavior is observed for the ferromagnetic

configuration of bulk Ca3Fe2Si3O12. Doping of Mn alters the elec-
tronic structure slightly, as shown in the DOS plot [refer to
Fig. 7(b)]. Peaks arising from the 3d states of Mn appear near
the Fermi level [refer to Fig. 7(c)]. Calculated Mn–O bond dis-
tances (2.20 Å–2.50 Å) [refer to Fig. 7(d)] are slightly shorter
than the Ca–O (2.37 Å–2.54 Å) bond distances due to the ionic
radius of Mn2+ being smaller than that of Ca2+. The constant
charge density plot of the Mn-doped configuration is shown
in Fig. 7(e).

In the case of Sc, the Fermi level does not change significantly,
and the doped configuration maintains its metallic behavior [refer
to Fig. 7(f)]. The Fermi level does not have any contribution from
Sc. States associated with Sc appear at ∼8 eV in the conduction
band [refer to Fig. 7(g)]. Sc–O bond distances are slightly longer
(by ∼0.04 Å) than the Fe–O bond distances. This is due to the
ionic radius of Sc3+ being larger than that of Fe3+, as discussed
in Sec. III D 2.

Doping of Ge on the Si site has a little effect on the DOS struc-
ture [refer to Fig. 7(j)]. The doped configuration exhibits metallic
behavior. Small peaks that belong to the 3s and 3p states of Ge appear
just below the Fermi level [refer to Fig. 7(k)]. The Si–O bond dis-
tance in pristine Ca3Fe2Si3O12 is 1.66 Å. The Ge–O bond distances
are longer than (by 0.15 Å) the Si–O bond distances. This is because
of the ionic radius of Ge4+ (0.39 Å) being larger than that of Si4+

(0.26 Å).
Doping of Al on the Si site shifts the Fermi energy level only

by 0.02 eV [refer to Fig. 8(b)]. The doped configuration is metallic.
Additional peaks arising from 3s and 3p states of Al appear near the
Fermi level [refer to Fig. 8(c)]. The calculated Al–O bond distances
(1.77 Å) are longer than the Si–O bond distances (1.66 Å). This is
because of the ionic radius and charge density of Al3+ being larger
and smaller, respectively, than that of Si4+.

FIG. 8. (a) DOS plot of bulk Ca3Fe2Si3O12, (b) the DOS plot of Al-doped Ca3Fe2Si3O12, (c) the atomic DOS plot of Al, (d) the optimized AlO4 unit with bond distance, (e) the
constant charge density plot of Al-doped Ca3Fe2Si3O12, (f) the DOS plot of Mn-doped Ca3Fe2Si3O12, (g) the atomic DOS plot of Mn, (h) the optimized MnO6 unit with bond
distance, and (i) the constant charge density plot of Mn-doped Ca3Fe2Si3O12.
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There is a slight shift in the Fermi energy level by 0.14 eV upon
doping of Mn on the Fe site. Peaks associated with Mn appear near
the Fermi level and in the valence band. Metallic behavior is still
maintained. A very small perturbation is observed in the Mn–O
bond distances compared to Fe–O bond distances. This is due to the
small difference in the ionic radius and charge mismatch. The con-
stant charge density plot of Mn doped on the Fe site in Ca3Fe2Si3O12
is shown in Fig. 8(h).

IV. CONCLUSIONS
Computational simulation was applied to analyze the behav-

ior of the defects, diffusion pathways, and dopant properties in
Ca3Fe2Si3O12. The Ca/Fe anti-site defect was predicted to be the
most energetically favorable intrinsic defect process. The activation
energy for three dimensional Ca vacancy migration in Ca3Fe2Si3O12
was calculated to be 2.63 eV, inferring low calcium mobility. Low
solution energies were calculated for Mn2+, Sc3+, and Ge4+ on the
Ca, Fe, and Si sites, respectively. Here, we show that Al3+ and Mn2+

are promising dopants on the Si and Fe sites, respectively, to intro-
duce additional Ca in the form of Ca interstitials in Ca3Fe2Si3O12 for
improving its capacity and Ca-ion diffusion. The difference in the
electronic properties between un-doped and doped configurations
was explained using electronic structures calculated using DFT.

SUPPLEMENTARY MATERIAL

See the supplementary material for the Buckingham potentials
used in the classical simulation of the current study.
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