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Abstract In order to overcome the problem of multicollinearity in logistic regres-
sion, several researchers proposed alternative estimators when exact linear restrictions
are available in addition to sample model. However, in practical situations the linear
restrictions are not always exact and mostly their nature is stochastic. In this paper, we
propose a new estimator called stochastic restricted Liumaximum likelihood estimator
(SRLMLE) by incorporating Liu estimator to the logistic regression model when the
linear restrictions are stochastic. Moreover, the conditions for superiority of SRLMLE
over the maximum likelihood estimator (MLE), stochastic restricted maximum like-
lihood estimator (SRMLE) and restricted Liu logistic estimator (RLLE) are derived
with respect to mean square error criterion. Finally, the performance of the new esti-
mator over MLE, LLE, SRMLE and RLLE is investigated in the sense of scalar mean
squared error by conducting aMonte Carlo simulation and using a numerical example.
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1 Introduction

It is well known that the Maximum likelihood estimation technique is preferred to
estimate the parameters of the logistic regression model. When the predictors in the
logistic regression model exhibit high degree of correlations, which is called as multi-
collinearity, the variance of themaximum likelihood estimator (MLE) is inflated so that
one cannot obtain efficient estimates. To overcome this issue in the logistic regression,
several researchers proposed alternative biased estimators to MLE. To obtain these
estimators researchers combined the existing biased estimators derived for the linear
regression model. Three types of biased estimators available in the linear regression
model are (i) biased estimators based only on sample information, (ii) biased estimators
based on sample information and priori available exact linear restrictions on parameter
space, and (iii) biased estimators based on sample information and stochastic linear
restrictions on parameter space.

Some of the improved logistic regression estimators of the first kind are namely
the ridge logistic estimator (RLE) (Schaefer et al. 1984), principal component logistic
estimator (PCLE) (Aguilera et al. 2006), modified logistic ridge estimator (MLRE)
(Nja et al. 2013), logistic Liu estimator (LLE) (Mansson et al. 2012), Liu-type estima-
tor (Inan and Erdogan 2013) and almost unbiased ridge logistic estimator (AURLE)
(Wu and Asar 2016). In the presence of exact prior information in addition to the sam-
ple information, several researchers proposed different estimators for the respective
parameter β. Duffy and Santner (1989) introduced the restricted maximum likeli-
hood estimator (RMLE) by incorporating the exact linear restriction on the unknown
parameters. Şiray et al. (2015) proposed a new estimator called restricted logistic Liu
estimator (RLLE) by replacingMLE by RMLE in the logistic Liu estimator. However,
RLLE estimator did not satisfy the stated linear restrictions. Consequently, Wu (2015)
proposed a modified restricted Liu estimator in logistic regression, which satisfies
the linear restrictions. Later Wu and Asar (2015) investigated the theoretical results
related to the mean squared error properties of the restricted estimator compared to
MLE,RMLEandLiu estimator.When the restrictions on the parameters are stochastic,
Nagarajah andWijekoon (2015) introduced a new estimator called stochastic restricted
maximum likelihood estimator (SRMLE), and derived the superiority conditions of
SRMLE over the estimators logistic ridge estimator (LRE), logistic Liu estimator
(LLE) and RMLE. Later the stochastic restricted ridge maximum likelihood estimator
(SRRMLE) was proposed by Varathan and Wijekoon (2016) by incorporating ridge
logistic estimator in the presence of stochastic restrictions.

In this paper, an estimator namely, Stochastic Restricted Liu Maximum Likelihood
Estimator (SRLMLE) is proposed to estimate the parameterswhen the linear stochastic
restrictions are available in addition to the sample information in the logistic regres-
sion model. The rest of the paper is organized as follows. The model specification and
existing estimators are given in Sect. 2. The Stochastic Restricted Liu Maximum like-
lihood Estimator (SRLMLE) has been proposed and derived its asymptotic properties
in Sect. 3. In Sect. 4, the mean square error matrix and the scalar mean square error for
this new estimator are obtained. The theoretical performance of the proposed estimator
over some existing estimators is derived in Sect. 5. The performance of the proposed
estimator with respect to the Scalar Mean Squared Error (SMSE) is investigated by

123



Logistic Liu Estimator under stochastic

performing aMonte Carlo simulation study in Sect. 6. In Sect. 7, a numerical example
is given to illustrate the theoretical findings of the proposed estimator. Finally, the
conclusions of the study is presented in Sect. 8.

2 Model specification and existing estimators

Consider the general logistic regression model

yi = πi + εi , i = 1, . . . , n (2.1)

which follows Bernoulli distribution with parameter πi as

πi = exp(x ′
iβ)

1 + exp(x ′
iβ)

, (2.2)

where xi is the i th row of X , which is an n × (p + 1) data matrix with p explanatory
variables and β is a (p + 1) × 1 vector of coefficients, εi are independent with mean
zero and variance πi (1 − πi ) of the response yi . The Maximum likelihood method is
the well-known estimation technique to estimate the parameter β, and the maximum
likelihood estimator (MLE) of β can be obtained as follows:

β̂MLE = C−1X ′Ŵ Z , (2.3)

whereC = X ′Ŵ X ; Z is the columnvectorwith i th element equals logi t (π̂i )+ yi−π̂i
π̂i (1−π̂i )

and Ŵ = diag[π̂i (1−π̂i )], which is an unbiased estimate of β. The covariance matrix
of β̂MLE is

Cov(β̂MLE ) = {X ′Ŵ X}−1. (2.4)

By following Liu (1993), Urgan and Tez (2008) and Mansson et al. (2012), the
Logistic Liu estimator (LLE) based on the sample information is defined as

β̂LLE = (C + I )−1(C + d I )β̂MLE

= Zd β̂MLE . (2.5)

where Zd = (C + I )−1(C + d I ) and 0 < d < 1 is a parameter.
The asymptotic properties of LLE are

E[β̂LLE ] = E[Zd β̂MLE ] = Zdβ, (2.6)

Cov[β̂LLE ] = Cov[Zd β̂MLE ]
= ZdC

−1Z ′
d

= (C + I )−1(C + d I )(I + dC−1)(C + I )−1, (2.7)
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and

Bias[β̂LLE ] = E[Zd β̂MLE ] − β = (Zd − I )β. (2.8)

According to the literature, to improve the performance of the estimators, prior
information is incorporated to the linear model either as exact linear restrictions or
stochastic linear restrictions when multicollinearity exists. The resulted estimator is
called Restricted estimator with exact restrictions, and the Mixed estimator (Theil and
Goldberger 1961) under stochastic linear restrictions. In most of the comparisons it
was noted that adding stochastic linear restrictions show higher performance than the
exact case.

Suppose that the following stochastic linear prior information is given in addition
to the general logistic regression model (2.1).

h = Hβ + υ; E(υ) = 0, Cov(υ) = �. (2.9)

where h is an (q × 1) stochastic known vector, H is a (q × (p + 1)) of full rank
q ≤ (p + 1) known elements and υ is an (q × 1) random vector of disturbances with
mean 0 and dispersion matrix �, and � is assumed to be known (q × q) positive
definite matrix. Further, it is assumed that υ is stochastically independent of ε, i.e)
E(ευ ′) = 0.

In the presence of exact linear restrictions on regression coefficients (υ = 0 in (2.9))
in addition to the logistic regression model (2.1), Duffy and Santner (1989) proposed
the following Restricted Maximum Likelihood Estimator (RMLE).

β̂RMLE = β̂MLE − C−1H ′(HC−1H ′)−1(H β̂MLE − h) (2.10)

The asymptotic variance and bias of β̂RMLE are

Cov(β̂RMLE ) = C−1 − C−1H ′(HC−1H ′)−1HC−1 (2.11)

and

Bias(β̂RMLE ) = −C−1H ′(HC−1H ′)−1(Hβ − h) respectively. (2.12)

Following Duffy and Santner (1989), Şiray et al. (2015) proposed the following
Restricted Logistic Liu estimator (RLLE) when exact linear restrictions are available
in addition to sample model (2.1).

β̂RLLE = (C + I )−1(C + d I )β̂RMLE

= Zd β̂RMLE . (2.13)

The asymptotic variance and bias of β̂RLLE are obtained as

Cov(β̂RLLE ) = Zd AZ
′
d , (2.14)

123



Logistic Liu Estimator under stochastic

and

Bias(β̂RLLE ) = (Zd − I )β + Zdδ
∗

= δ3 (say), respectively, (2.15)

where A = C−1 − C−1H ′(HC−1H ′)−1HC−1 and δ∗ = −C−1H ′(HC−1H ′)−1

(Hβ − h). Note that A is the variance and δ∗ is the bias of β̂RMLE .
When the linear restriction is stochastic as in (2.9) in addition to the logistic regres-

sion model (2.1), Nagarajah and Wijekoon (2015) proposed the following stochastic
restricted maximum likelihood estimator (SRMLE).

β̂SRMLE = β̂MLE + C−1H ′(� + HC−1H ′)−1(h − H β̂MLE ) (2.16)

The asymptotic properties of SRMLE are

E(β̂SRMLE ) = β, (2.17)

and

Cov(β̂SRMLE ) = C−1 − C−1H ′(� + HC−1H ′)−1HC−1

= (C + H ′�−1H)−1. (2.18)

To improve the performance of the SRMLE, Varathan and Wijekoon (2016) proposed
the stochastic restricted ridge maximum likelihood estimator (SRRMLE) by incor-
porating the Ridge estimator to the logistic regression (LRE) by replacing MLE in
(2.16), and have obtained the following estimator:

β̂SRRMLE = β̂LRE + C−1H ′(� + HC−1H ′)−1(h − H β̂LRE ) (2.19)

where,

β̂LRE = (X ′Ŵ X + k I )−1X ′Ŵ X β̂MLE

= (C + k I )−1C β̂MLE

= Zk β̂MLE (2.20)

where Zk = (C + k I )−1C and k is a constant, k ≥ 0.

Further,

E[β̂LRE ] = Zkβ; and

Cov[β̂LRE ] = Zk(C + k I )−1. (2.21)

The asymptotic properties of SRRMLE:

E(β̂SRRMLE ) = E[β̂LRE ] + C−1H ′(� + HC−1H ′)−1(Hβ − HE(β̂LRE ))

= Zkβ + C−1H ′(� + HC−1H ′)−1(Hβ − HZkβ)

= [Zk + C−1H ′(� + HC−1H ′)−1(H − HZk)]β (2.22)
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Cov(β̂SRRMLE ) = Cov[β̂LRE + C−1H ′(� + HC−1H ′)−1(h − H β̂LRE )]
= Zk(C + k I )−1 + C−1H ′(� + HC−1H ′)−1

[� + HZk(C + k I )−1H ′](� + HC−1H ′)−1HC−1

−2C−1H ′(� + HC−1H ′)−1HZk(C + k I )−1 (2.23)

Moreover, it was concluded in their paper that the estimator SRRMLE is superior over
MLE, LRE and SRMLE under certain conditions.

3 The new proposed estimator

By incorporating the Liu estimator to the logistic regression under linear stochastic
restriction, we propose a new biased estimator which is called stochastic restricted liu
maximum likelihood estimator (SRLMLE) as follows:

β̂SRLMLE = Zd β̂SRMLE . (3.1)

Note that the asymptotic properties of SRLMLE are given as

E(β̂SRLMLE ) = Zd E[β̂SRMLE ]
= Zdβ, (3.2)

and

Cov(β̂SRLMLE ) = Cov[Zd β̂SRMLE ]
= ZdVar [β̂SRMLE ]Z ′

d

= Zd(C + H ′�−1H)−1Z ′
d

= (C + I )−1(C + d I )(C + H ′�−1H)−1(C + d I )(C + I )−1

= Ad (say). (3.3)

respectively. Nowwe consider the performance of this new estimator over the existing
estimators given in the literature.

4 Mean square error matrix criteria

The mean square error (MSE) of estimator β̂ which is an estimator of β is defined as
follows:

MSE(β̂, β) = E[(β̂ − β)(β̂ − β)′]
= D(β̂) + B(β̂)B ′(β̂) (4.1)

where D(β̂) is the dispersion matrix, and B(β̂) = E(β̂) − β denotes the bias vector.
The scalar mean square error (SMSE) of the estimator β̂ can be defined as

SMSE(β̂, β) = trace[MSE(β̂, β)] (4.2)

For two given estimators β̂1 and β̂2, the estimator β̂2 is said to be superior to β̂1 under
the MSE criterion if and only if
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M(β̂1, β̂2) = MSE(β̂1, β) − MSE(β̂2, β) ≥ 0. (4.3)

The mean square error of the proposed estimator SRLMLE is

MSE(β̂SRLMLE ) = D(β̂SRLMLE ) + B(β̂SRLMLE )B ′(β̂SRLMLE )

= Ad + δδ′ (4.4)

where

δ = Bias(β̂SRLMLE )

= E(β̂SRLMLE ) − β

= (Zd − I )β. (4.5)

Hence, the scalar mean square error of β̂SRLMLE is

SMSE(β̂SRLMLE ) = trace{Ad + δδ′} (4.6)

5 The performance of the new estimator

In this section we investigate the theoretical performance of the proposed estimator
SRLMLE over some existing estimators:MLE, LLE, RLLE, and SRMLEwith respect
to the mean square error sense. Further, the necessary conditions for superiority of the
proposed estimator compared with the other existing estimators are also derived.

• SRLMLE Versus MLE

MSE(β̂MLE ) − MSE(β̂SRLMLE ) = {D(β̂MLE ) − D(β̂SRLMLE )}
+ {B(β̂MLE )B ′(β̂MLE ) − B(β̂SRLMLE )B ′(β̂SRLMLE )}

= C−1 − {Ad + δδ′}
= M1 − N1 (5.1)

where M1 = C−1 and N1 = Ad + δδ′. One can obviously say that Ad and M1
are positive definite and δδ′ is non-negative definite matrix. Further by Lemma 1
(see Appendix 1), it is clear that N1 is positive definite matrix. By Lemma 2 (see
Appendix 1), if λmax(N1M

−1
1 ) < 1, then M1 − N1 is a positive definite matrix,

where λmax(N1M
−1
1 ) is the largest eigen value of N1M

−1
1 . Based on the above

arguments, the following theorem can be stated.

Theorem 1 The estimator SRLMLE is superior to MLE if and only if λmax(N1M
−1
1 )

< 1

• SRLMLE Versus LLE

MSE(β̂LLE ) − MSE(β̂SRLMLE ) = {D(β̂LLE ) − D(β̂SRLMLE )}
+ {B(β̂LLE )B ′(β̂LLE )

− B(β̂SRLMLE )B ′(β̂SRLMLE )} (5.2)
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Since B(β̂LLE ) = B(β̂SRLMLE ) = (Zd − I )β, then the Eq. (5.2) becomes

MSE(β̂LLE ) − MSE(β̂SRLMLE ) = {D(β̂LLE ) − D(β̂SRLMLE )}
= ZdC

−1Z ′
d − Zd(C + H ′�−1H)−1Z ′

d

= Zd{C−1 − (C + H ′�−1H)−1}Z ′
d

= Zd{C−1H ′(� + HC−1H ′)−1HC−1}Z ′
d

= ZdM2Z
′
d (5.3)

where Zd = (C + I )−1(C + d I ) and M2 = {C−1H ′(� + HC−1H ′)−1HC−1}.
One can obviously say that Zd and M2 are positive definite matrices. Conse-
quently, ZdM2Z ′

d is a positive definite matrix. Therefore, the estimator SRLMLE
is always superior to LLE in the sense of MSE.

• SRLMLE Versus SRMLE

MSE(β̂SRMLE ) − MSE(β̂SRLMLE ) = {D(β̂SRMLE ) − D(β̂SRLMLE )}
+ {B(β̂SRMLE )B ′(β̂SRMLE ) − B(β̂SRLMLE )B ′(β̂SRLMLE )}

= (C + H ′�−1H)−1 − {Ad + δδ′}
= M3 − N3 (5.4)

where M3 = (C + H ′�−1H)−1 and N3 = Ad + δδ′. One can obviously say that
Ad and M3 are positive definite and δδ′ is non-negative definite matrices. Further
by Lemma 1, it is clear that N3 is positive definite matrix. By Lemma 2 (see
Appendix 1), if λmax(N3M

−1
3 ) < 1, then M3 − N3 is a positive definite matrix,

where λmax(N3M
−1
3 ) is the the largest eigen value of N3M

−1
3 . Based on the above

arguments, the following theorem can be stated.

Theorem 2 The estimator SRLMLE is superior to SRMLE if and only if
λmax(N3M

−1
3 ) < 1.

• SRLMLE Versus RLLE

MSE(β̂RLLE ) − MSE(β̂SRLMLE ) = {D(β̂RLLE ) − D(β̂SRLMLE )}
+ {B(β̂RLLE )B ′(β̂RLLE ) − B(β̂SRLMLE )B ′(β̂SRLMLE )}

= {Zd AZ
′
d − Ad} + {δ3δ′

3 − δδ′} (5.5)

Now consider,

D(β̂RLLE ) − D(β̂SRLMLE ) = Zd AZ
′
d − Ad

= M4 − N4

= D∗
2 (say) (5.6)

where M4 = Zd AZ ′
d and N4 = Ad . One can obviously say that M4 and N4 are

positive definitematrices. ByLemma2, ifλmax(N4M
−1
4 ) < 1, then D∗

2 = M4−N4
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is a positive definite matrix, where λmax(N4M
−1
4 ) is the the largest eigen value of

N4M
−1
4 . Based on the above arguments and Lemma 3, the following theorem can

be stated.

Theorem 3 When λmax(N4M
−1
4 ) < 1, the estimator SRLMLE is superior to RLLE

if and only if δ′(D∗
2 + δ′

3δ3)
−1δ ≤ 1.

Based on the above results one can say that the new estimator SRLMLE is always
superior to LLE in the MSE sense. Moreover, the SRLMLE is superior over MLE,
SRMLE and RLLE with respect to the mean squared error matrix sense under certain
conditions. The comparison of the performances of these estimators is done by a
simulation study in the following section.

6 A simulation study

AMonte Carlo simulation is conducted to illustrate the performance of the estimators
MLE, LLE, SRMLE, RLLE and SRLMLE by means of Scalar Mean Square Error
(SMSE). Following McDonald and Galarneau (1975) and Kibria et al. (2003), the
explanatory variables are generated using the following equation.

xi j = (1 − ρ2)1/2zi j + ρzi,p+1, i = 1, 2, . . . , n, j = 1, 2, . . . , p (6.1)

where zi j are pseudo- random numbers from standardized normal distribution and ρ2

represents the correlation between any two explanatory variables. Four explanatory
variables are generated using (6.1). Four different values of ρ corresponding to 0.70,
0.80, 0.90 and 0.99 are considered. Further for the sample size n, four different values
25, 50, 75, and 100 are also considered. The dependent variable yi in (2.1) is obtained

from the Bernoulli(πi ) distribution where πi = exp(x ′
iβ)

1+exp(x ′
iβ)

. The parameter values of

β1, β2, . . . , βp are chosen so that
∑p

j=1 β2
j = 1 and β1 = β2 = · · · = βp.

Moreover, we choose the following restrictions.

H =
⎛

⎝
1 −1 0 0
0 1 −1 0
0 0 1 −1

⎞

⎠ , h =
⎛

⎝
1
−2
1

⎞

⎠ and � =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ (6.2)

FollowingWu and Asar (2015) and Mansson et al. (2012), we can theoretically obtain
the optimumvalue of the biasing parameter d byminimizing SMSEvalueswith respect
to d. However, for simplicity in this paper we select some values of d in the range
0 < d < 1.

The simulation is repeated 3000 times by generating new pseudo- random numbers
and the simulated SMSE values of the estimators are obtained using the following
equation.

ˆSMSE(β̂∗) = 1

3000

3000∑

r=1

(β̂r − β)′(β̂r − β) (6.3)
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where β̂r is any estimator considered in the r th simulation. The results of the simulation
are reported in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ,17, and 18 (Appendix
3) and also displayed in Figs. 1, 2, 3, and 4 (Appendix 2). According to Figs. 1, 2, 3,
and 4, it can be observed that in general increase in degree of correlation between two
explanatory variables ρ inflates the estimated SMSE of all the estimators and increase
in sample size n declines the estimated SMSE of all the estimators. Further it was
noted from the Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 , 17, and 18 that
when ρ = 0.7, 0.8, and 0.9 the new estimator SRLMLE performed well compared to
all the other estimators MLE, LLE, RLLE and SRMLE with respect to all values of d
in the range 0 < d < 1 and n= 25, 50, 75 and 100. Moreover, in the case of ρ = 0.99
and n = 25, 50, the estimator RLLE produces smaller SMSE values compared to all
the other estimators considered in this study.

7 Numerical example

In this section we apply the new estimator SRLMLE to the data set taken from the offi-
cial web site (http://www.scb.se/) of the Statistics Sweden to illustrate the theoretical
results. The same data set was used by Wu and Asar (2016), Asar and Genc (2015)
and Mansson et al. (2012) as a numerical example. The data set has 271 observations
corresponding to the municipalities of Sweden, and the available variables are:

x1: Population,
x2: Number of unemployed people,
x3: Number of newly constructed buildings,
x4: Number of bankrupt firms,
y: Net population change which is defined as

y =
{
1; if there is an increase in the population;
0; Otherwise.

The correlation matrix of the predictor variables is given in Table 1. Since the
bivariate correlations (Table 1) among all predictor variables are very high (greater than
0.9), and the condition number is 38.3274 indicates a severe multicollinearity problem
in this data set. The SMSE values of MLE, LLE, RLLE, SRMLE, and SRLMLE for
a selected values of biasing parameter d in the range 0 < d < 1 is given in the
Table 2. Note that the SMSE values of the new estimator SRLMLE are minimum
when comparing the same with the other estimators for all values of d in the range
0 < d < 1. Therefore the SRLMLE performs well with compared to the estimators

Table 1 The correlation matrix
of the design matrix

x1 x2 x3 x4

x1 1.0000 0.9939 0.9481 0.9324

x2 0.9939 1.0000 0.9288 0.9016

x3 0.9481 0.9288 1.0000 0.9463

x4 0.9324 0.9016 0.9463 1.0000
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Table 2 The SMSE values of estimators for different values of d

MLE LLE RLLE SRMLE SRLMLE

d = 0.05 0.000411363 0.000411062 2.281557167 0.000411165 0.000410865

d = 0.1 0.000411363 0.000411078 2.281562599 0.000411165 0.000410881

d = 0.2 0.000411363 0.000411110 2.281573462 0.000411165 0.000410912

d = 0.3 0.000411363 0.000411142 2.281584326 0.000411165 0.000410944

d = 0.4 0.000411363 0.000411174 2.281595190 0.000411165 0.000410975

d = 0.5 0.000411363 0.000411206 2.281606054 0.000411165 0.000411007

d = 0.6 0.000411363 0.000411238 2.281616919 0.000411165 0.000411039

d = 0.7 0.000411363 0.000411269 2.281627784 0.000411165 0.000411070

d = 0.8 0.000411363 0.000411301 2.281638650 0.000411165 0.000411102

d = 0.9 0.000411363 0.000411333 2.281649516 0.000411165 0.000411134

d = 0.99 0.000411363 0.000411362 2.281659296 0.000411165 0.000411162

The bold values indicate the exact places, where the proposed estimator is superior over the other estimators

MLE, LLE, RLLE SRMLE in the SMSE sense. Further, the SMSE of the estimator
RLLE is the largest among all estimators in the given range of d. The findings of this
Numerical application coincides with the simulation results displayed in Table 17,
which is the case of n = 100 and ρ = 0.90.

8 Concluding remarks

In this paper, we proposed the Stochastic Restricted Liu Maximum Likelihood Esti-
mator (SRLMLE) for logistic regression model when the linear stochastic restriction
is available. The relative performance of the proposed estimator SRLMLE over MLE,
LLE, RLLE and SRMLE were analyzed by a numerical example and a Monte Carlo
simulation study. The empirical results of this paper show that the proposed estimator
SRLMLE is always superior to the LLE. Also, it is superior over MLE, RLLE and
SRMLE with respect to all the values of n, ρ, and 0 < d < 1 except the case of very
high degree of collinearity ρ = 0.99 and the low sample size n = 25, 50.

Appendix 1

Lemma 1 Let A : n × n and B : n × n such that A > 0 and B ≥ 0. Then A+ B > 0
(Rao and Toutenburg 1995).

Lemma 2 Let the two n × n matrices M > 0 ,N ≥ 0, then M > N if and only if
λmax(NM−1) < 1 (Rao et al. 2008).

Lemma 3 Let β̃ j = A j y, j = 1, 2 be two competing homogeneous linear estimators
of β. Suppose that D = Cov(β̃1) − Cov(β̃2) > 0, where Cov(β̃ j ), j = 1, 2 denotes
the covariance matrix of β̃ j . Then 
(β̃1, β̃2) = MSEM(β̃1) − MSEM(β̃2) ≥ 0 if
and only if d ′

2(D+d ′
1d1)

−1d2 ≤ 1, where MSEM(β̃ j ), d j ; j = 1, 2 denote the Mean
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Square Error Matrix and bias vector of β̃ j , respectively (Trenkler and Toutenburg
1990).

Appendix 2

See Figs. 1, 2, 3, and 4.

Fig. 1 Estimated SMSE values for MLE, LLE, RLLE, SRMLE and SRLMLE for n = 25

Fig. 2 Estimated SMSE values for MLE, LLE, RLLE, SRMLE and SRLMLE for n = 50
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Fig. 3 Estimated SMSE values for MLE, LLE, RLLE, SRMLE and SRLMLE for n = 75

Fig. 4 Estimated SMSE values for MLE, LLE, RLLE, SRMLE and SRLMLE for n = 100

Appendix 3

See Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ,17, and 18.
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Table 3 The estimated MSE values for different d when n = 25 and ρ = 0.70

d = 0.05 d = 0.1 d = 0.2 d = 0.3 d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 0.99

MLE 1.9464 1.9464 1.9464 1.9464 1.9464 1.9464 1.9464 1.9464 1.9464 1.9464 1.9464

LLE 0.8555 0.9006 0.9954 1.0964 1.2036 1.3171 1.4368 1.5627 1.6948 1.8332 1.9630

RLLE 1.0765 1.1223 1.2184 1.3209 1.4296 1.5445 1.6657 1.7932 1.9269 2.0669 2.1982

SRMLE 1.0449 1.0449 1.0449 1.0449 1.0449 1.0449 1.0449 1.0449 1.0449 1.0449 1.0449

SRLMLE 0.5225 0.5424 0.5847 0.6304 0.6794 0.7319 0.7877 0.8470 0.9096 0.9756 1.0378

The bold values indicate the exact places, where the proposed estimator is superior over the other estimators

Table 4 The estimated MSE values for different d when n = 25 and ρ = 0.80

d = 0.05 d = 0.1 d = 0.2 d = 0.3 d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 0.99

MLE 2.7913 2.7913 2.7913 2.7913 2.7913 2.7913 2.7913 2.7913 2.7913 2.7913 2.7913

LLE 0.9221 0.9914 1.1401 1.3025 1.4785 1.6680 1.8712 2.0880 2.3184 2.5624 2.7936

RLLE 0.8581 0.9081 1.0149 1.1307 1.2555 1.3895 1.5324 1.6845 1.8456 2.0157 2.1766

SRMLE 1.2325 1.2325 1.2325 1.2325 1.2325 1.2325 1.2325 1.2325 1.2325 1.2325 1.2325

SRLMLE 0.4958 0.5222 0.5792 0.6416 0.7095 0.7830 0.8619 0.9463 1.0362 1.1316 1.2222

The bold values indicate the exact places, where the proposed estimator is superior over the other estimators

Table 5 The estimated MSE values for different d when n = 25 and ρ = 0.90

d = 0.05 d = 0.1 d = 0.2 d = 0.3 d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 0.99

MLE 5.3804 5.3804 5.3804 5.3804 5.3804 5.3804 5.3804 5.3804 5.3804 5.3804 5.3804

LLE 0.9533 1.0845 1.3813 1.7240 2.1126 2.5469 3.0272 3.5532 4.1251 4.7429 5.3381

RLLE 0.5393 0.5905 0.7045 0.8341 0.9794 1.1404 1.3170 1.5092 1.7171 1.9407 2.1552

SRMLE 1.5915 1.5915 1.5915 1.5915 1.5915 1.5915 1.5915 1.5915 1.5915 1.5915 1.5915

SRLMLE 0.4063 0.4422 0.5227 0.6150 0.7192 0.8351 0.9628 1.1023 1.2535 1.4166 1.5734

The bold values indicate the exact places, where the proposed estimator is superior over the other estimators

Table 6 The estimated MSE values for different d when n = 25 and ρ = 0.99

d = 0.05 d = 0.1 d = 0.2 d = 0.3 d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 0.99

MLE 52.3691 52.3691 52.3691 52.3691 52.3691 52.3691 52.3691 52.3691 52.3691 52.3691 52.3691

LLE 0.7093 1.3238 3.2545 6.1211 9.9235 14.6618 20.3359 26.9459 34.4917 42.9733 51.4069

RLLE 0.1709 0.1963 0.2736 0.3864 0.5346 0.7183 0.9374 1.1920 1.4819 1.8074 2.1306

SRMLE 2.4583 2.4583 2.4583 2.4583 2.4583 2.4583 2.4583 2.4583 2.4583 2.4583 2.4583

SRLMLE 0.1748 0.2039 0.2924 0.4213 0.5908 0.8008 1.0513 1.3423 1.6738 2.0458 2.4152
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Table 7 The estimated MSE values for different d when n = 50 and ρ = 0.70

d = 0.05 d = 0.1 d = 0.2 d = 0.3 d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 0.99

MLE 0.8628 0.8628 0.8628 0.8628 0.8628 0.8628 0.8628 0.8628 0.8628 0.8628 0.8628

LLE 0.5724 0.5864 0.6148 0.6441 0.6742 0.7050 0.7367 0.7691 0.8024 0.8364 0.8677

RLLE 1.4065 1.4390 1.5053 1.5736 1.6437 1.7159 1.7899 1.8659 1.9437 2.0236 2.0970

SRMLE 0.6129 0.6129 0.6129 0.6129 0.6129 0.6129 0.6129 0.6129 0.6129 0.6129 0.6129

SRLMLE 0.4178 0.4265 0.4445 0.4631 0.4825 0.5025 0.5232 0.5446 0.5667 0.5894 0.6105

The bold values indicate the exact places, where the proposed estimator is superior over the other estimators

Table 8 The estimated MSE values for different d when n = 50 and ρ = 0.80

d = 0.05 d = 0.1 d = 0.2 d = 0.3 d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 0.99

MLE 1.2291 1.2291 1.2291 1.2291 1.2291 1.2291 1.2291 1.2291 1.2291 1.2291 1.2291

LLE 0.6844 0.7088 0.7593 0.8118 0.8664 0.9231 0.9817 1.0425 1.1053 1.1701 1.2302

RLLE 1.1988 1.2387 1.3210 1.4065 1.4952 1.5873 1.6826 1.7811 1.8830 1.9880 2.0854

SRMLE 0.7660 0.7660 0.7660 0.7660 0.7660 0.7660 0.7660 0.7660 0.7660 0.7660 0.7660

SRLMLE 0.4466 0.4604 0.4891 0.5191 0.5504 0.5831 0.6170 0.6523 0.6889 0.7268 0.7620

The bold values indicate the exact places, where the proposed estimator is superior over the other estimators

Table 9 The estimated MSE values for different d when n = 50 and ρ = 0.90

d = 0.05 d = 0.1 d = 0.2 d = 0.3 d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 0.99

MLE 2.3496 2.3496 2.3496 2.3496 2.3496 2.3496 2.3496 2.3496 2.3496 2.3496 2.3496

LLE 0.8470 0.9056 1.0296 1.1630 1.3057 1.4577 1.6190 1.7895 1.9694 2.1586 2.3367

RLLE 0.8157 0.8660 0.9721 1.0856 1.2066 1.3350 1.4710 1.6143 1.7651 1.9234 2.0722

SRMLE 1.0940 1.0940 1.0940 1.0940 1.0940 1.0940 1.0940 1.0940 1.0940 1.0940 1.0940

SRLMLE 0.4358 0.4613 0.5154 0.5735 0.6357 0.7019 0.7722 0.8466 0.9250 1.0074 1.0851

The bold values indicate the exact places, where the proposed estimator is superior over the other estimators

Table 10 The estimated MSE values for different d when n = 50 and ρ = 0.99

d = 0.05 d = 0.1 d = 0.2 d = 0.3 d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 0.99

MLE 22.6486 22.6486 22.6486 22.6486 22.6486 22.6486 22.6486 22.6486 22.6486 22.6486 22.6486

LLE 0.6811 1.0427 2.0309 3.3725 5.0672 7.1153 9.5167 12.2713 15.3793 18.8405 22.2576

RLLE 0.1377 0.1710 0.2608 0.3813 0.5324 0.7142 0.9267 1.1699 1.4438 1.7483 2.0486

SRMLE 2.1961 2.1961 2.1961 2.1961 2.1961 2.1961 2.1961 2.1961 2.1961 2.1961 2.1961

SRLMLE 0.1407 0.1759 0.2705 0.3976 0.5572 0.7492 0.9737 1.2306 1.5200 1.8418 2.1592
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Table 11 The estimated MSE values for different d when n = 75 and ρ = 0.70

d = 0.05 d = 0.1 d = 0.2 d = 0.3 d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 0.99

MLE 0.5536 0.5536 0.5536 0.5536 0.5536 0.5536 0.5536 0.5536 0.5536 0.5536 0.5536

LLE 0.4225 0.4291 0.4424 0.4560 0.4698 0.4838 0.4980 0.5125 0.5273 0.5422 0.5559

RLLE 1.5723 1.5965 1.6456 1.6955 1.7464 1.7981 1.8505 1.9043 1.9588 2.0141 2.0647

SRMLE 0.4366 0.4366 0.4366 0.4366 0.4366 0.4366 0.4366 0.4366 0.4366 0.4366 0.4366

SRLMLE 0.3366 0.3413 0.3509 0.3608 0.3708 0.3812 0.3918 0.4026 0.4137 0.4250 0.4354

The bold values indicate the exact places, where the proposed estimator is superior over the other estimators

Table 12 The estimated MSE values for different d when n = 75 and ρ = 0.80

d = 0.05 d = 0.1 d = 0.2 d = 0.3 d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 0.99

MLE 0.7871 0.7871 0.7871 0.7871 0.7871 0.7871 0.7871 0.7871 0.7871 0.7871 0.7871

LLE 0.5306 0.5428 0.5678 0.5935 0.6197 0.6466 0.6742 0.7023 0.7311 0.7606 0.7876

RLLE 1.3977 1.4291 1.4932 1.5589 1.6262 1.6952 1.7658 1.8380 1.9119 1.9873 2.0567

SRMLE 0.5618 0.5618 0.5618 0.5618 0.5618 0.5618 0.5618 0.5618 0.5618 0.5618 0.5618

SRLMLE 0.3858 0.3939 0.4105 0.4277 0.4454 0.4635 0.4822 0.5013 0.5210 0.5411 0.5597

The bold values indicate the exact places, where the proposed estimator is superior over the other estimators

Table 13 The estimated MSE values for different d when n = 75 and ρ = 0.90

d = 0.05 d = 0.1 d = 0.2 d = 0.3 d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 0.99

MLE 1.5018 1.5018 1.5018 1.5018 1.5018 1.5018 1.5018 1.5018 1.5018 1.5018 1.5018

LLE 0.7294 0.7627 0.8318 0.9042 0.9800 1.0591 1.1416 1.2275 1.3167 1.4093 1.4955

RLLE 1.0321 1.0766 1.1687 1.2650 1.3657 1.4706 1.5798 1.6933 1.8111 1.9331 2.0466

SRMLE 0.8478 0.8478 0.8478 0.8478 0.8478 0.8478 0.8478 0.8478 0.8478 0.8478 0.8478

SRLMLE 0.4300 0.4478 0.4849 0.5238 0.5646 0.6072 0.6516 0.6979 0.7460 0.7960 0.8425

The bold values indicate the exact places, where the proposed estimator is superior over the other estimators

Table 14 The estimated MSE values for different d when n = 75 and ρ = 0.99

d = 0.05 d = 0.1 d = 0.2 d = 0.3 d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 0.99

MLE 14.4586 14.4586 14.4586 14.4586 14.4586 14.4586 14.4586 14.4586 14.4586 14.4586 14.4586

LLE 0.7197 0.9961 1.6978 2.5981 3.6971 4.9946 6.4908 8.1856 10.0790 12.1710 14.2236

RLLE 0.1541 0.1935 0.2926 0.4187 0.5717 0.7517 0.9586 1.1924 1.4532 1.7409 2.0229

SRMLE 2.0210 2.0210 2.0210 2.0210 2.0210 2.0210 2.0210 2.0210 2.0210 2.0210 2.0210

SRLMLE 0.1506 0.1892 0.2862 0.4099 0.5602 0.7371 0.9407 1.1708 1.4276 1.7110 1.9888

The bold values indicate the exact places, where the proposed estimator is superior over the other estimators
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Table 15 The estimated MSE values for different d when n = 100 and ρ = 0.70

d = 0.05 d = 0.1 d = 0.2 d = 0.3 d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 0.99

MLE 0.4091 0.4091 0.4091 0.4091 0.4091 0.4091 0.4091 0.4091 0.4091 0.4091 0.4091

LLE 0.3342 0.3381 0.3458 0.3536 0.3616 0.3696 0.3777 0.3859 0.3943 0.4027 0.4103

RLLE 1.6640 1.6833 1.7223 1.7617 1.8017 1.8423 1.8833 1.9249 1.9670 2.0096 2.0484

SRMLE 0.3405 0.3405 0.3405 0.3405 0.3405 0.3405 0.3405 0.3405 0.3405 0.3405 0.3405

SRLMLE 0.2797 0.2826 0.2885 0.2946 0.3008 0.3071 0.3135 0.3201 0.3268 0.3336 0.3398

The bold values indicate the exact places, where the proposed estimator is superior over the other estimators

Table 16 The estimated MSE values for different d when n = 100 and ρ = 0.80

d = 0.05 d = 0.1 d = 0.2 d = 0.3 d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 0.99

MLE 0.5813 0.5813 0.5813 0.5813 0.5813 0.5813 0.5813 0.5813 0.5813 0.5813 0.5813

LLE 0.4314 0.4388 0.4538 0.4690 0.4845 0.5003 0.5163 0.5326 0.5493 0.5661 0.5816

RLLE 1.5160 1.5418 1.5941 1.6475 1.7018 1.7571 1.8133 1.8706 1.9288 1.9880 2.0422

SRMLE 0.4461 0.4461 0.4461 0.4461 0.4461 0.4461 0.4461 0.4461 0.4461 0.4461 0.4461

SRLMLE 0.3344 0.3397 0.3505 0.3616 0.3730 0.3845 0.3964 0.4084 0.4208 0.4333 0.4448

The bold values indicate the exact places, where the proposed estimator is superior over the other estimators

Table 17 The estimated MSE values for different d when n = 100 and ρ = 0.90

d = 0.05 d = 0.1 d = 0.2 d = 0.3 d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 0.99

MLE 1.1084 1.1084 1.1084 1.1084 1.1084 1.1084 1.1084 1.1084 1.1084 1.1084 1.1084

LLE 0.6327 0.6543 0.6986 0.7444 0.7919 0.8410 0.8917 0.9439 0.9978 1.0533 1.1045

RLLE 1.1828 1.2218 1.3021 1.3851 1.4709 1.5595 1.6509 1.7451 1.8421 1.9419 2.0341

SRMLE 0.6980 0.6980 0.6980 0.6980 0.6980 0.6980 0.6980 0.6980 0.6980 0.6980 0.6980

SRLMLE 0.4080 0.4210 0.4478 0.4756 0.5044 0.5342 0.5649 0.5967 0.6295 0.6632 0.6944

The bold values indicate the exact places, where the proposed estimator is superior over the other estimators

Table 18 The estimated MSE values for different d when n = 100 and ρ = 0.99

d = 0.05 d = 0.1 d = 0.2 d = 0.3 d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9 d = 0.99

MLE 10.6602 10.6602 10.6602 10.6602 10.6602 10.6602 10.6602 10.6602 10.6602 10.6602 10.6602

LLE 0.7582 0.9867 1.5411 2.2257 3.0405 3.9854 5.0604 6.2656 7.6009 9.0664 10.4966

RLLE 0.1849 0.2287 0.3344 0.4639 0.6175 0.7949 0.9964 1.2217 1.4711 1.7443 2.0107

SRMLE 1.8841 1.8841 1.8841 1.8841 1.8841 1.8841 1.8841 1.8841 1.8841 1.8841 1.8841

SRLMLE 0.1710 0.2112 0.3082 0.4274 0.5689 0.7325 0.9184 1.1265 1.3569 1.6094 1.8557

The bold values indicate the exact places, where the proposed estimator is superior over the other estimators
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