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Abstract. For a bounded right linear operators A, in a right quaternionic
Hilbert space V R

H , following the complex formalism, we study the Berbe-
rian extension A◦, which is an extension of A in a right quaternionic
Hilbert space obtained from V R

H . In the complex setting, the important
feature of the Berberian extension is that it converts approximate point
spectrum of A into point spectrum of A◦. We show that the same is
true for the quaternionic S-spectrum. As in the complex case, we use
the Berberian extension to study some properties of the commutator of
two quaternionic bounded right linear operators.
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1. Introduction

In 1962 Berberian extended a bounded linear operator A on a complex Hilbert
space X to an operator A◦ on a complex Hilbert space obtained from X. An
important feature of this extension is that it converts approximate point
spectrum of A into point spectrum of A◦ [3]. This extension is also a useful
tool in studying the spectrum of commutator of two bounded linear operators
[11].

In the complex theory this extension goes as follows. Let X be a com-
plex Hilbert space. Let l∞(X) denotes the space of all bounded sequence
of elements of X, and let c0(X) denote the space of all null sequences in
X. Endowed with the canonical norm, the space X = l∞(X)/c0(X) is a
Hilbert space into which X can be isometrically embedded. Every operator
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A ∈ B(X), the set of all bounded linear operators on X, defines by com-
ponent wise action an operator on l∞(X) which leaves c0(X) invariant, and
hence induces an operator A◦ ∈ B(X). It is immediate that A◦ is an exten-
sion of A when X is regarded as a subspace of X, and that the mapping that
assigns to each A ∈ B(X) its Berberian extension A◦ ∈ B(X) is an isometric
algebra homomorphism.

In this note we shall study the Berberian extension of a quaternionic
right linear operator A on a right quaternionic Hilbert space and show that
the approximate point S-spectrum of A coincides with the point S-spectrum
of the Berberian extension A◦. Following the complex formalism given in [11],
we shall also study certain S-spectral properties of the commutator of two
quaternionic bounded right linear operators.

In the complex setting, in a complex Hilbert space or Banach space H,
for a bounded linear operator, A, the spectrum is defined as the set of complex
numbers λ for which the operator Qλ(A) = A−λIH, where IH is the identity
operator on H, is not invertible. In the quaternionic setting, let V R

H
be a

separable right quaternionic Hilbert space or Banach space, A be a bounded
right linear operator, and Rq(A) = A2 − 2Re(q)A + |q|2IV R

H

, with q ∈ H, the
set of all quaternions, be the pseudo-resolvent operator. The S-spectrum is
defined as the set of quaternions q for which Rq(A) is not invertible. The
notion of S-spectrum was introduced in 2006 by Colombo and Sabadini. The
discovery and the importance of this spectrum is well explained in [6]. Further
developments on the theory of S-spectrum can be found in the book [7]. In the
complex case various classes of spectra, such as approximate point spectrum,
surjectivity spectrum etc. are defined by placing restrictions on the operator
Qλ(A). In this regard, in the quaternionic setting, these spectra are also
defined by placing the same restrictions to the operator Rq(A) [12,14].

Due to the non-commutativity, in the quaternionic case there are three
types of Hilbert spaces: left, right, and two-sided, depending on how vectors
are multiplied by scalars. This fact can entail several problems. For example,
when a Hilbert space H is one-sided (either left or right) the set of linear
operators acting on it does not have a linear structure. Moreover, in a one
sided quaternionic Hilbert space, given a linear operator A and a quaternion
q ∈ H, in general we have that (qA)† �= qA† (see [13] for details). These
restrictions can severely prevent the generalization to the quaternionic case
of results valid in the complex setting. Even though most of the linear spaces
are one-sided, it is possible to introduce a notion of multiplication on both
sides by fixing an arbitrary Hilbert basis of H. This fact allows to have a linear
structure on the set of linear operators, which is a minimal requirement to
develop a full theory.

2. Mathematical Preliminaries

In order to make the paper self-contained, we recall some facts about quater-
nions which may not be well-known. For details we refer the reader to [1,10,
15].
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2.1. Quaternions

Let H denote the field of all quaternions and H
∗ the group (under quaternionic

multiplication) of all invertible quaternions. A general quaternion can be
written as

q = q0 + q1i + q2j + q3k, q0, q1, q2, q3 ∈ R,

where i, j,k are the three quaternionic imaginary units, satisfying i2 = j2 =
k2 = −1 and ij = k = −ji, jk = i = −kj, ki = j = −ik. The quaternionic
conjugate of q is

q = q0 − iq1 − jq2 − kq3,

while |q| = (qq)1/2 denotes the usual norm of the quaternion q. If q is non-zero

element, it has inverse q−1 =
q

|q|2 .

2.2. Quaternionic Hilbert Spaces

In this subsection we discuss right quaternionic Hilbert spaces. For more
details we refer the reader to [1,10,15].

2.2.1. Right Quaternionic Hilbert Space. Let V R
H

be a vector space under
right multiplication by quaternions. For φ, ψ, ω ∈ V R

H
and q ∈ H, the inner

product

〈· | ·〉V R
H

: V R
H

× V R
H

−→ H

satisfies the following properties
(i) 〈φ | ψ〉V R

H

= 〈ψ | φ〉V R
H

(ii) ‖φ‖2
V R
H

= 〈φ | φ〉V R
H

> 0 unless φ = 0, a real norm
(iii) 〈φ | ψ + ω〉V R

H

= 〈φ | ψ〉V R
H

+ 〈φ | ω〉V R
H

(iv) 〈φ | ψq〉V R
H

= 〈φ | ψ〉V R
H

q

(v) 〈φq | ψ〉V R
H

= q〈φ | ψ〉V R
H

where q stands for the quaternionic conjugate. It is always assumed that
the space V R

H
is complete under the norm given above and separable. Then,

together with 〈· | ·〉V R
H

this defines a right quaternionic Hilbert space. Quater-
nionic Hilbert spaces share many of the standard properties of complex
Hilbert spaces. Every separable quaternionic Hilbert space posses a basis. It
should be noted that once a Hilbert basis is fixed, every left (resp. right)
quaternionic Hilbert space also becomes a right (resp. left) quaternionic
Hilbert space [10,15].

The field of quaternions H itself can be turned into a left quaternionic
Hilbert space by defining the inner product 〈q | q′〉 = qq′ or into a right
quaternionic Hilbert space with 〈q | q′〉 = qq′.

3. Right Quaternionic Linear Operators and Some Basic
Properties

In this section we shall define right H-linear operators and recall some basis
properties. Most of them are very well known. In this manuscript, we follow
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the notations in [2,10]. We shall also recall some results pertinent to the
development of the paper.

Definition 3.1. A mapping A : D(A) ⊆ V R
H

−→ V R
H

, where D(A) stands for
the domain of A, is said to be right H-linear operator or, for simplicity, right
linear operator, if

A(φa + ψb) = (Aφ)a + (Aψ)b, if φ, ψ ∈ D(A) and a,b ∈ H.

The set of all right linear operators from V R
H

to V R
H

will be denoted by
L(V R

H
) and the identity linear operator on V R

H
will be denoted by IV R

H

. For a
given A ∈ L(V R

H
), the range and the kernel will be

ran(A) = {ψ ∈ V R
H

| Aφ = ψ for φ ∈ D(A)}
ker(A) = {φ ∈ D(A) | Aφ = 0}.

We call an operator A ∈ L(V R
H

) bounded if

‖A‖ = sup
‖φ‖

V R
H

=1

‖Aφ‖V R
H

< ∞, (3.1)

or equivalently, there exist K ≥ 0 such that ‖Aφ‖V R
H

≤ K‖φ‖V R
H

for all
φ ∈ D(A). The set of all bounded right linear operators from V R

H
to V R

H
will

be denoted by B(V R
H

).
Assume that V R

H
is a right quaternionic Hilbert space, A is a right linear

operator acting on it. Then, there exists a unique linear operator A† such that

〈ψ | Aφ〉V R
H

= 〈A†ψ | φ〉V R
H

; for all φ ∈ D(A), ψ ∈ D(A†), (3.2)

where the domain D(A†) of A† is defined by

D(A†) = {ψ ∈ V R
H

| ∃ϕ such that 〈ψ | Aφ〉V R
H

= 〈ϕ | φ〉V R
H

}.

Proposition 3.2. [10] Let A,B ∈ B(V R
H

) then

(a) (A + B)† = A† + B†.
(b) (AB)† = B†A†.

We shall need the following results which are already appeared in [10,
12].

Proposition 3.3. Let A ∈ B(V R
H

). Then

(a) ran(A)⊥ = ker(A†).
(b) ker(A) = ran(A†)⊥.
(c) ker(A) is closed subspace of V R

H
.

Theorem 3.4. [12] (Bounded inverse theorem) Let A ∈ B(V R
H

), then the fol-
lowing results are equivalent.
(a) A has a bounded inverse on its range.
(b) A is bounded below.
(c) A is injective and has a closed range.

Proposition 3.5. [12] Let A ∈ B(V R
H

). Then,
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(a) A is invertible if and only if it is injective with a closed range (i.e.,
ker(A) = {0} and ran(A) = ran(A)).

(b) A is left (right) invertible if and only if A† is right (left) invertible.

Proposition 3.6. [12] A ∈ B(V R
H

) is surjective if and only if A is right invert-
ible.

Proposition 3.7. A ∈ B(V R
H

) is injective if and only if A is left invertible.

Proof. From point (b) of Proposition 3.5, point (b) of Proposition 3.3, and
Proposition 3.6, we have, A is left invertible ⇔ A† is right invertible ⇔
ran(A†) = V R

H
⇔ ker(A) = {0}. This completes the proof. �

3.1. Left Scalar Multiplications on V R
H

We shall extract the definition and some properties of left scalar multiples of
vectors on V R

H
from [10] as needed for the development of the manuscript.

The left scalar multiple of vectors on a right quaternionic Hilbert space is
an extremely non-canonical operation associated with a choice of preferred
Hilbert basis. Since V R

H
is a separable Hilbert space, V R

H
has a Hilbert basis

O = {ϕk | k ∈ N} , (3.3)

where N is a countable index set. The left scalar multiplication on V R
H

induced
by O is defined as the map H × V R

H
� (q, φ) �−→ qφ ∈ V R

H
given by

qφ :=
∑

k∈N

ϕkq〈ϕk | φ〉V R
H

, (3.4)

for all (q, φ) ∈ H × V R
H

.

Proposition 3.8. [10] The left product defined in the Eq. 3.4 satisfies the fol-
lowing properties. For every φ, ψ ∈ V R

H
and p, q ∈ H,

(a) q(φ + ψ) = qφ + qψ and q(φp) = (qφ)p.
(b) ‖qφ‖V R

H

= |q|‖φ‖V R
H

.
(c) q(pφ) = (qp)φ.
(d) 〈qφ | ψ〉V R

H

= 〈φ | qψ〉V R
H

.
(e) rφ = φr, for all r ∈ R.
(f) qϕk = ϕkq, for all k ∈ N .

Remark 3.9. (1) The meaning of writing pφ is p · φ, because the notation
from the Eq. 3.4 may be confusing, when V R

H
= H. However, regarding

the field H itself as a right H-Hilbert space, an orthonormal basis O
should consist only of a singleton, say {ϕ0}, with | ϕ0 |= 1, because
we clearly have θ = ϕ0〈ϕ0 | θ〉, for all θ ∈ H. The equality from (f)
of Proposition 3.8 can be written as pϕ0 = ϕ0p, for all p ∈ H. In fact,
the left hand may be confusing and it should be understood as p · ϕ0,
because the true equality pϕ0 = ϕ0p would imply that ϕ0 = ±1. For
the simplicity, we are writing pφ instead of writing p · φ.

(2) Also one can trivially see that (p + q)φ = pφ + qφ, for all p, q ∈ H and
φ ∈ V R

H
.
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Furthermore, the quaternionic left scalar multiplication of linear oper-
ators is also defined in [5,10]. For any fixed q ∈ H and a given right linear
operator A : V R

H
−→ V R

H
, the left scalar multiplication of A is defined as a

map qA : V R
H

−→ V R
H

by the setting

(qA)φ := q(Aφ) =
∑

k∈N

ϕkq〈ϕk | Aφ〉V R
H

, (3.5)

for all φ ∈ V R
H

. It is straightforward that qA is a right linear operator. We can
define right scalar multiplication of the right linear operator A : V R

H
−→ V R

H

as a map Aq : V R
H

−→ V R
H

by the setting

(Aq)φ := A(qφ), (3.6)

for all φ ∈ V R
H

. It is also right linear operator. One can easily see that

(qA)† = A†q and (Aq)† = qA†. (3.7)

3.2. S-spectrum

For a given right linear operator A : D(A) ⊆ V R
H

−→ V R
H

and q ∈ H, we
define the operator Rq(A) : D(A2) −→ H by

Rq(A) = A2 − 2Re(q)A + |q|2IV R
H

,

where q = q0 + iq1 + jq2 + kq3 is a quaternion, Re(q) = q0 and |q|2 =
q2
0 + q2

1 + q2
2 + q2

3 .
In the literature, the operator is called pseudo-resolvent since it is not

the resolvent operator of A but it is the one related to the notion of spectrum
as we shall see in the next definition. For more information, on the notion of
S-spectrum the reader may consult e.g. [4,5,9,10].

Definition 3.10. Let A : D(A) ⊆ V R
H

−→ V R
H

be a right linear operator. The
S-resolvent set (also called spherical resolvent set) of A is the set ρS(A) (⊂ H)
such that the three following conditions hold true:

(a) ker(Rq(A)) = {0}.
(b) ran(Rq(A)) is dense in V R

H
.

(c) Rq(A)−1 : ran(Rq(A)) −→ D(A2) is bounded.

The S-spectrum (also called spherical spectrum) σS(A) of A is defined by
setting σS(A) := H � ρS(A). For a bounded linear operator A we can write
the resolvent set as

ρS(A) = {q ∈ H | Rq(A) has an inverse in B(V R
H

)}
= {q ∈ H | ker(Rq(A)) = {0} and ran(Rq(A)) = V R

H
}

and the spectrum can be written as

σS(A) = H\ρS(A)

= {q ∈ H | Rq(A) has no inverse in B(V R
H

)}
= {q ∈ H | ker(Rq(A)) �= {0} or ran(Rq(A)) �= V R

H
}.

The spectrum σS(A) decomposes into three major disjoint subsets as follows:
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(i) the spherical point spectrum of A:

σpS(A) := {q ∈ H | ker(Rq(A)) �= {0}}.
(ii) the spherical residual spectrum of A:

σrS(A) := {q ∈ H | ker(Rq(A)) = {0}, ran(Rq(A)) �= V R
H

}.

(iii) the spherical continuous spectrum of A:

σcS(A) := {q ∈ H | ker(Rq(A)) = {0}, ran(Rq(A)) = V R
H , Rq(A)−1 /∈ B(V R

H ) }.

If Aφ = φq for some q ∈ H and φ ∈ V R
H

� {0}, then φ is called an eigenvector
of A with right eigenvalue q. The set of right eigenvalues coincides with the
point S-spectrum, see [10], Proposition 4.5.

Proposition 3.11. [8,10] For A ∈ B(V R
H

), the resolvent set ρS(A) is a non-
empty open set and the spectrum σS(A) is a non-empty compact set.

Remark 3.12. For A ∈ B(V R
H

), since σS(A) is a non-empty compact set so is
its boundary. That is, ∂σS(A) = ∂ρS(A) �= ∅.

Proposition 3.13. [6] Let A ∈ B(V R
H

). Then ker(Rq(A)) �= {0} if and only if
q is a right eigenvalue of A. In particular every right eigenvalue belongs to
σS(A).

Definition 3.14. [12] Let A ∈ B(V R
H

). The approximate S-point spectrum of
A, denoted by σS

ap(A), is defined as

σS
ap(A) = {q ∈ H | there is a sequence {φn}∞

n=1

such that ‖φn‖ = 1 and ‖Rq(A)φn‖ −→ 0}.

Proposition 3.15. [12] Let A ∈ B(V R
H

), then σpS(A) ⊆ σS
ap(A).

Definition 3.16. [12,14] The spherical compression spectrum of an operator
A ∈ B(V R

H
), denoted by σS

c (A), is defined as

σS
c (A) =

{
q ∈ H | ran(Rq(A)) is not dense in V R

H

}
.

Definition 3.17. [14] Let A ∈ B(V R
H

). The surjectivity S-spectrum of A is
defined as

σS
su(A) =

{
q ∈ H | ran(Rq(A) �= V R

H

}
.

Clearly we have

σS
c (A) ⊆ σS

su(A) and σS(A) = σpS(A) ∪ σS
su(A). (3.8)

Proposition 3.18. [12] Let A ∈ B(V R
H

). Then A has the following properties.
(a) σpS(A) ⊆ σS

c (A†) and σS
c (A) = σpS(A†).

(b) σS
su(A) = σS

ap(A
†) and σS

ap(A) = σS
su(A†).

(c) σS(A) = σS(A†).

Proposition 3.19. [12] If A ∈ B(V R
H

) and q ∈ H, then the following state-
ments are equivalent.
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(a) q �∈ σS
ap(A).

(b) ker(Rq(A)) = {0} and ran(Rq(A)) is closed.
(c) There exists a constant c ∈ R, c > 0 such that ‖Rq(A)φ‖ ≥ c‖φ‖ for all

φ ∈ D(A2).

Theorem 3.20. [10] Let V R
H

be a right quaternionic Hilbert space equipped with
a left scalar multiplication. Then the set B(V R

H
) equipped with the point-wise

sum, with the left and right scalar multiplications defined in Eqs. 3.5 and 3.6,
with the composition as product, with the adjunction A −→ A†, as in 3.2, as
∗− involution and with the norm defined in 3.1, is a quaternionic two-sided
Banach C∗-algebra with unity IV R

H

.

One can observe that in the above theorem, if the left scalar multiplica-
tion is left out on V R

H
, then B(V R

H
) becomes a real Banach C∗-algebra with

unity IV R
H

.

4. Berberian Extension in the Quaternionic Setting

Following the definition given in [3] for complex bounded sequences, we
denote by glim a Banach generalized limit defined for bounded sequences
{qn} ⊆ H with the following properties. For q ∈ H and {qn}, {pn} ⊆ H,
(a) glim(qn + pn) = glim(qn) + glim(pn);
(b) glim(qnq) = glim(qn) q;
(c) glim(qqn) = q glim(qn);
(d) glim(qn) = lim

n→∞ qn whenever {qn} is convergent;

(e) glim(qn) ≥ 0 when {qn} ⊆ R and qn ≥ 0 for all n.
glim defines a positive linear form on the vector space M of all quaternionic
bounded sequences and c0 denotes the set of quaternionic null sequences,
that is, sequences that converge to zero, and has the value 1 for the constant
sequence {1}. From properties (a) and (e) of glim, glim(qn) is real whenever
qn is real for all n. Hence glim(qn) = glim(qn) for any bounded sequence
{qn} ⊆ H.

4.1. An extension of V R
H

Let

B =
{

s = {φn} | {φn} ⊆ V R
H

, ‖φn‖V R
H

< ∞ ∀n, that is, {‖φn‖V R
H

} ∈ M
}

.

If s = {φn} and t = {ψn} write s = t whenever φn = ψn for all n. Also

s + t = {φn + ψn} and sq = {φnq},

with these operations B becomes a quaternionic right linear vector space. The
left scalar multiplication, on B, is defined as the map H×B � (q, s) �−→ qs ∈ B
given by

qs := {qφn}, (4.1)
for all (q, s) = (q, {φn}) ∈ H × B, where for each n ∈ N, qφn is given by the
Definition 3.4. Suppose that s = {φn}, t = {ψn} ∈ B. Since

|〈φn|ψn〉V R
H

| ≤ ‖φn‖V R
H

‖ψn‖V R
H

, for all n,
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it is permissible to define

Φ(s, t) = glim(〈φn|ψn〉V R
H

).

We have the following properties for Φ.

(a) Since 〈φn|ψn〉V R
H

= 〈ψn|φn〉V R
H

, we have Φ(s, t) = Φ(t, s). That is, Φ is
symmetric.

(b) Since 〈φn|φn〉V R
H

≥ 0 for all n, Φ(s, s) ≥ 0 for all s ∈ B. That is, Φ is
positive.

(c) Φ is a bilinear functional, in the sense that Φ is left-antilinear with
respect to the first variable,

Φ(rp + sq, t) = pΦ(r, t) + qΦ(s, t), for all p, q ∈ H and r, s, t ∈ B,

and Φ is right-linear with respect to the second variable,

Φ(s, rp + tq) = Φ(s, r)p + Φ(s, t)q, for all p, q ∈ H and r, s, t ∈ B.

From the Schwarz’s inequality we have

|Φ(s, t)|2 ≤ Φ(s, s)Φ(t, t).

Let

N = {s ∈ B | Φ(s, s) = 0} = {s ∈ B | Φ(s, t) = 0 ∀ t ∈ B}.
Clearly N is a right linear subspace of B. Write [s] = s + N for a coset. The
quotient right linear vector space P = B/N becomes an inner product space
by defining

〈[s] | [t]〉P = Φ(s, t).

If u = {[φn]} = {φn} + N and v = {[ψn]} = {ψn} + N, then

〈u | v〉P = 〈[φn] | [ψn]〉P = glim〈φn | ψn〉V R
H

. (4.2)

Using the left scalar multiplication defined on B, by the Eq. 4.1, we can define
a left scalar multiplication on P by the map H × P � (q, s) �−→ q[s] ∈ P
given by

q[s] := qs + N, (4.3)

for all (q, [s]) = (q, s + N) ∈ H × P. Following proposition provides some
properties of the above defined left scalar multiplication:

Proposition 4.1. The left product defined in the Eq. 4.3 satisfies the following
properties. For every [s], [t] ∈ P and p, q ∈ H,

(a) q([s] + [t]) = q[s] + q[t] and q([s]p) = (q[s])p.
(b) ‖ q[s] ‖P = |q|‖ [s] ‖P.
(c) q(p[s]) = (qp)[s].
(d) 〈q[s] | [t]〉P = 〈[s] | q[t]〉P.
(e) r[s] = [s]r, for all r ∈ R.

Proof. The proof immediately follows from the Proposition 3.8 together with
the Eqs. 4.1 and 4.3. �
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Let φ ∈ V R
H

, we write {φ} for the sequence all of whose terms are φ and
φ′ for the coset {[φ]} = {φ} + N. Evidently

〈[φ] | [ψ]〉P = 〈φ|ψ〉V R
H

,

and φ �→ [φ] is an isometric right linear mapping of V R
H

onto a closed linear
subspace V R

H

′ of P. Regard P as a linear subspace of its Hilbert space com-
pletion H. Then V R

H

′ is a closed linear subspace of H and P is a dense linear
subspace of H.

4.2. A Representation of B(V R
H
)

Every operator A in V R
H

determines an operator A◦ in H as follows.
If s = {φn} ∈ B then the relation ‖Aφn‖V R

H

≤ ‖A‖ ‖φn‖V R
H

shows that
{Aφn} ∈ B. Define

A0 : B −→ B by A0s = {Aφn},

then A0 is a right linear mapping such that

Φ(A0s,A0s) ≤ ‖A‖Φ(s, s).

In particular, if s ∈ N, that is Φ(s, s) = 0, then A0s ∈ N. it follows that

A◦ : P −→ P by {[φn]} �→ {[Aφn]} (4.4)

is a well-defined right linear map. Thus

A◦s′ = (A0s)′

and the inequality

〈A◦u|A◦u〉P ≤ ‖A‖2〈u|u〉P
is valid for all u ∈ P. That is, ‖A◦u‖P ≤ ‖A‖‖u‖P, for all u ∈ P. Hence A◦ is
bounded (continuous), and ‖A◦‖◦ ≤ ‖A‖, ‖·‖◦ is the norm on B(H). The left
scalar multiplication of A◦ by any q ∈ H is defined as a map qA◦ : P −→ P
by the setting

(qA◦){[φn]} := {[q(Aφn)]}, (4.5)
for all {[φn]} ∈ P. It is straightforward that qA◦ is a right linear operator.
We also have the following properties for the operators:

Proposition 4.2. For A,B ∈ B(V R
H

) and q ∈ H, we have
(a) (A + B)◦ = A◦ + B◦,
(b) (qA)◦ = qA◦,
(c) (AB)◦ = A◦B◦,
(d) (A†)◦ = (A◦)†,
(e) IV R

H

◦ = IV R
H

(f) ‖A◦‖◦ = ‖A‖.
Proof. Proofs of (a), (c) and (e) are straightforward from the definition of
A◦. Assertion (b) immediately follows from the (definition) Eq. 4.5 as follows:
for any {[φn]} ∈ P,

(qA◦){[φn]} = {[q(Aφn)]} = {[(qA)φn]} = (qA)◦{[φn]}.
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To verify (d), let C = (A◦)† and u = {[φn]} and v = {[ψn]}. Then

〈A◦u | v〉P = 〈u | Cv〉P.

This implies that

〈u | Cv〉P = 〈A◦u | v〉P = glim(〈Aφn|ψn〉V R
H

) = glim(〈φn|A†ψn〉V R
H

)

= 〈u | (A†)◦v〉P.

Therefore (A†)◦ = C = (A◦)†, and this completes the proof of (d). Finally
let us establish the equality ‖A◦‖◦ = ‖A‖. Firstly note that for any φ ∈ V R

H
,

from the Eq. 4.2, we have ‖φ′‖P = ‖φ‖V R
H

. Now since A◦φ′ = (Aφ)′, for all
φ ∈ V R

H
,

‖A◦‖◦ = sup
‖φ′‖P=1

‖A◦φ′‖P = sup
‖φ‖

V R
H

=1

‖(Aφ)′‖P = sup
‖φ‖

V R
H

=1

‖Aφ‖V R
H

= ‖A‖.

Therefore the assertion (f) follows. �

The continuous right linear mapping A◦ extends to a unique right linear
operator in H, which we also denote A◦. Also in the Theorem 3.20, B(V R

H
)

with left multiplication is a C∗-algebra with unity IV R
H

. In the same manner,
B(H) with left multiplication is a C∗-algebra with the same unity IV R

H

. Also
note that, no matter which Hilbert basis we choose to define a left multi-
plication the spaces B(V R

H
) and B(H) becomes C∗-algebras, and hence the

results provided in this note are independent of the basis chosen.

Theorem 4.3. The mapping

B(V R
H

) −→ B(H) by A �→ A◦

is a faithful ∗-representation.
Proof. The assertion (c) of Proposition 4.2 verifies that the above map is a
homomorphism. To check the injectivity of this map, suppose that A,B ∈
B(V R

H
) with A◦ = B◦. Then for any {[φn]} ∈ P, we have

{[Aφn]} = {[Bφn]} ⇒ {(A − B)φn} ∈ N

⇒ glim(〈(A − B)φn | (A − B)φn〉V R
H

) = 0.

Let φ ∈ V R
H

, and choose φn = φ, ∀n ∈ N. Then ‖(A − B)φ‖V R
H

= 0. This
concludes that A = B. Therefore the above map is injective. Hence the
theorem follows. �

Suppose A ≥ 0, that is 〈Aφ|φ〉V R
H

≥ 0 for all φ ∈ V R
H

. If u = {φn}′ ∈ P,
then 〈Aφn|φn〉V R

H

≥ 0 for all n, hence

〈A◦u|u〉P = glim〈Aφn|φn〉V R
H

≥ 0.

Hence 〈A◦v|v〉P ≥ 0 for all v ∈ H. Thus clearly for an operator A in V R
H

we
have

A ≥ 0 ⇔ A◦ ≥ 0. (4.6)

Proposition 4.4. If A ∈ B(V R
H

), then σS
ap(A

◦) = σS
ap(A).
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Proof. Let q ∈ H. Then, q �∈ σS
ap(A) if and only if there exists ε > 0

such that Rq(A†)Rq(A) ≥ εIV R
H

. By Eq. 4.6, this condition is equivalent
to Rq((A◦)†)Rq(A◦) ≥ εIV R

H

thus q /∈ σS
ap(A

◦). �

The following theorem is the key result of Berberian extension.

Theorem 4.5. For every operator A ∈ B(V R
H

), we have σS
ap(A) = σS

ap(A
◦) =

σpS(A◦).

Proof. From Propositions 3.15, 4.4 the relation σS
ap(A) = σS

ap(A
◦) ⊇ σpS(A◦)

is clear. Let q ∈ σS
ap(A). Then there exists a sequence {φn} ⊆ V R

H
with

‖φn‖V R
H

= 1 such that ‖Rq(A)φn‖V R
H

→ 0. Set u = {φn}′, clearly ‖u‖P = 1.
Also

‖Rq(A◦)u‖P = glim‖Rq(A)φn‖V R
H

→ 0.

Therefore, by Proposition 3.13, q is a right eigenvalue of A◦. Hence q ∈
σpS(A◦), which completes the proof. �

5. Application to Commutators in the Quaternionic Setting

In the complex setting, the Berberian extension is very useful in studying
spectral properties of commutators [11]. Following the complex formalism, in
this section, we shall study some properties of S-spectrum of commutators in
the quaternionic setting.

Proposition 5.1. Let A,B ∈ B(V R
H

) such that AB = BA, then
(a) σS

ap(A + B) ⊆ σS
ap(A) + σS

ap(B),
(b) σS

su(A + B) ⊆ σS
su(A) + σS

su(B),
(c) σS(A + B) ⊆ σS(A) + σS(B).

Proof. (a) Since AB = BA we have A◦B◦ = B◦A◦. Let q ∈ σS
ap(A + B) =

σpS(A◦ + B◦). Let Z = ker(Rq(A◦ + B◦)). then Z �= ∅. Let ψ ∈ A◦Z, then
ψ = A◦φ for some φ ∈ Z and also Rq(A◦ + B◦)φ = 0. Now

Rq(A◦ + B◦)ψ = Rq(A◦ + B◦)A◦φ = A◦Rq(A◦ + B◦)φ = 0.

Therefore ψ ∈ Z, hence A◦Z ⊆ Z. That is, Z is invariant under A◦, and
therefore σS

ap(A
◦|Z) �= ∅. Let p ∈ σS

ap(A
◦|Z) = σpS(A◦|Z), hence A◦ − pIH =

0. Since q ∈ σpS(A◦ +B◦), we have A◦ +B◦ −qIH = 0, that is B◦ = qIH−A◦.
Therefore,

B◦ − (q − p)IH = −(A◦ − p)IH = 0 on Z.

Thus q − p ∈ σpS(B◦|Z). Hence, from Proposition 4.4,

q = p + (q − p) ∈ σpS(A◦) + σpS(B◦) = σS
ap(A

◦) + σS
ap(B

◦)

= σS
ap(A) + σS

ap(B).

This completes the proof of (a).
(b) Since AB = BA, we have A†B† = B†A†, and therefore (a) holds for
A†, B†. Further from Proposition 3.18, part (b), σS

su(A) = σS
ap(A

†). Thus (b)
follows.
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(c) For any A ∈ B(V R
H

), from Eq. 3.8, Proposition 3.15, we have σS(A) =
σpS(A) ∪ σS

su(A) ⊆ σS
ap(A) ∪ σS

su(A). And clearly σS
ap(A), σS

su(A) ⊆ σS(A).
Therefore, from (a) and (b), we have

σS
ap(A + B) ⊆ σS

ap(A) + σS
ap(B) ⊆ σS(A) + σS(B)

and

σS
su(A + B) ⊆ σS

su(A) + σS
su(B) ⊆ σS(A) + σS(B).

Thus

σS(A + B) ⊆ σS
ap(A + B) ∪ σS

su(A + B) ⊆ σS(A) + σS(B).

Hence the inclusion (c) holds. �
Definition 5.2. Given S, T ∈ B(V R

H
), the commutator C(S, T ) : B(V R

H
) −→

B(V R
H

) is the mapping

C(S, T )(A) = SA − AT = LS(A) − RT (A), for all A ∈ B(V R
H

),

where LS(A) = SA and RT (A) = AT . It is clear that A ∈ B(V R
H

) intertwines
the pair (S, T ) precisely when C(S, T ) = 0.

Remark 5.3. It is worth noting the following results: for any q ∈ H and
S, T ∈ B(V R

H
),

(1) LSRT = RTLS ,
(2) Rq(LS) = Rq(S),
(3) Rq(RT )A = ARq(T ); for all A ∈ B(V R

H
),

(4) LRq(S) = Rq(LS),
(5) RRq(T ) = Rq(RT ).

The verifications of these results are elementary.

The next proposition gathers some useful identities to prove the S-
spectral properties of commutators which are provided in Theorem 5.5.

Proposition 5.4. For arbitrary operators S, T ∈ B(V R
H

) the following asser-
tions hold true:
(a) σS

ap(LS) = σS
ap(S),

(b) σS
ap(RT ) = σS

su(T ),
(c) σS

su(LS) = σS
su(S),

(d) σS
su(RT ) = σS

ap(T ).

Proof. (a) To prove (a), let q ∈ σS
ap(LS), then there exists a sequence {An} ⊆

B(V R
H

) with ‖An‖ = 1 such that ‖Rq(LS)An‖ → 0. That is, ‖Rq(S)An‖ → 0.

Set ψn =
φ

‖Anφ‖V R
H

, for all n and for some 0 �= φ ∈ V R
H

. Then ‖Anψn‖V R
H

= 1,

for all n and ‖Rq(S)Anψn‖V R
H

→ 0. Thus q ∈ σS
ap(S) and σS

ap(LS) ⊆ σS
ap(S).

To see the other inclusion, let q ∈ σS
ap(S), then there exists a sequence {ψn} ⊆

V R
H

with ‖ψn‖V R
H

= 1 and ‖Rq(S)ψn‖V R
H

→ 0. Pick a linear functional Φ in
(V R

H
)∗ which is the dual of V R

H
with ‖Φ‖∗ = 1, where ‖ · ‖∗ is a norm on the

dual of V R
H

. Define, for each n, an operator An ∈ B(V R
H

) by

Anφ = ψnΦ(φ), for all φ ∈ V R
H

.
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Then ‖An‖ = 1 for all n, and

‖Rq(LS)An‖ = ‖Rq(S)An‖ = ‖Rq(S)ψn‖V R
H

→ 0.

Thus q ∈ σS
ap(LS) and therefore σS

ap(LS) = σS
ap(S).

(b) To establish the equality σS
ap(RT ) = σS

su(T ), let q �∈ σS
su(T ), that is

Rq(T ) is surjective. Now for each A ∈ B(V R
H

),

‖Rq(RT )A‖ = ‖ARq(T )‖ ≥ ‖ARq(T )φ‖V R
H

, for all φ ∈ V R
H

.

That is, as Rq(T ) is surjective, ‖Rq(RT )A‖ ≥ ‖Aψ‖V R
H

, for all ψ = Rq(T )φ ∈
V R
H

. Hence

‖Rq(RT )A‖ ≥ sup
‖ψ‖=1

‖Aψ‖V R
H

= ‖A‖, for all A ∈ B(V R
H

).

Therefore Rq(RT ) is bounded below, and hence by Proposition 3.19, q �∈
σS

ap(RT ). Conversely suppose that Rq(RT ) is bounded below. Then there
exists c > 0 such that c‖A‖ ≤ |‖Rq(RT )‖| = ‖ARq(T )‖, for all A ∈ B(V R

H
);

where |‖ · ‖| is the norm on B(B(V R
H

)). Choose a unit vector ψ ∈ V R
H

. For
arbitrary linear functional Φ ∈ (V R

H
)∗, let AΦ ∈ B(V R

H
) given by

AΦ(φ) = ψΦ(φ), for all φ ∈ V R
H

.

Then

c‖Φ‖∗ = c‖AΦ‖ ≤ ‖AΦRq(T )‖ = ‖Φ ◦ Rq(T )‖, for all Φ ∈ (V R
H

)∗.

Hence Rq(T )† is bounded below. That is, by Proposition 3.4, Rq(T )† is injec-
tive. Therefore by Propositions 3.3, ran(Rq(T ))⊥ = ker(Rq(T )†) = {0}, and
so Rq(T ) is surjective. Thus we have σS

ap(RT ) = σS
su(T ).

(c) Now

q /∈ σS
su(LS) ⇐⇒ Rq(LS)is sujective ⇐⇒ Rq(S) is sujective

⇐⇒ q /∈ σS
su(S).

Therefore σS
su(LS) = σS

su(S).
(d) In order to verify the inclusion σS

su(RT ) ⊆ σS
ap(T ), let q �∈ σS

ap(T ), then by
Proposition 3.19, Rq(T ) is bounded below on V R

H
. Therefore, by Proposition

3.4, Rq(T ) is injective. Thus by Proposition 3.7, Rq(T ) is left invertible on
V R
H

. Therefore, there exist P ∈ B(V R
H

) such that PRq(T ) = IV R
H

. This implies
that

Rq(RT )RP A = RP (A)Rq(T ) = APRq(T ) = A, for all A ∈ B(V R
H

).

That is, Rq(RT ) is right invertible on B(V R
H

), thus by Proposition 3.6,
Rq(RT ) is surjective. Hence q �∈ σS

su(RT ), and we get σS
su(RT ) ⊆ σS

ap(T ).
To verify the other inclusion σS

ap(T ) ⊆ σS
su(RT ), suppose that q �∈ σS

su(RT ),
then Rq(RT ) is surjective. This implies that for each A ∈ B(V R

H
), there ex-

ists B ∈ B(V R
H

) such that Rq(RT )B = A. That is, BRq(T ) = A. Assuming
A,B �= 0 without loss of generality, we get

‖Rq(T )‖ ≥ ‖A‖
‖B‖ .
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This gives that Rq(T ) is bounded below, and q �∈ σS
ap(T ). Therefore the

equality σS
su(RT ) = σS

ap(T ) holds. �

The following theorem is the main result about the S-spectral properties
of commutators which we provide in this note.

Theorem 5.5. For arbitrary operators S, T ∈ B(V R
H

) the following assertions
hold true for their commutator C(S, T ).
(a) σS(C(S, T )) = σS(S) − σS(T ),
(b) σS

ap(C(S, T )) = σS
ap(S) − σS

su(T ),
(c) σS

su(C(S, T )) = σS
su(S) − σS

ap(T ).

Proof. To prove (b), In order to establish σS
ap(S) − σS

su(T ) ⊆ σS
ap(C(S, T )),

let q ∈ σS
ap(S) and p ∈ σS

su(T ). It follows, from (a) and (b) in the Proposition
5.4, that q ∈ σS

ap(LS) and p ∈ σS
ap(RT ). By Proposition 4.5 we have

q ∈ σS
ap(LS) = σS

ap(L
◦
S) = σpS(L◦

S).

Therefore, there exists A ∈ B(V R
H

) such that A �= 0 and (L◦
S −q)A = 0. That

is, (S◦ − q)A = 0. Again by Proposition 4.5,

p ∈ σS
ap(RT ) = σS

ap(R
◦
T ) = σpS(R◦

T ).

Therefore there exists B ∈ B(V R
H

) such that B �= 0 and (R◦
T −p)B = 0. That

is B(T ◦ − p) = 0. Consider

(C(S, T )◦ − q + p)AB = (L◦
S − R◦

T − q + p)AB

= (L◦
S − q)AB − (R◦

T − p)AB

= (S◦ − q)AB − AB(T ◦ − p) = 0.

Thus

q − p ∈ σpS(C(S, T )◦) = σS
ap(C(S, T )◦) = σS

ap(C(S, T )).

Therefore σS
ap(S)−σS

su(T ) ⊆ σS
ap(C(S, T )). Now since σS

ap(LS) = σS
ap(S) and

σS
ap(RT ) = σS

su(T ), we get from part (a) of Proposition 5.1,

σS
ap(C(S, T )) = σS

ap(LS − RT ) ⊆ σS
ap(LS) − σS

ap(RT ) ⊆ σS
ap(S) − σS

su(T ).

This concludes the proof for (b).
(c) Applying σS

su(LS) = σS
su(S), and σS

su(RT ) = σS
ap(T ) in part (b) of Propo-

sition 5.1, the inclusion ⊆ in assertion (c) is established. Next to show that
σS

su(S) − σS
ap(T ) ⊆ σS

su(C(S, T )), let q ∈ σS
su(S) and p ∈ σS

ap(T ). It follows
from (a) and (b) in Proposition 5.4, and Proposition 4.5 that

q ∈ σS
ap(RS) = σS

ap(R
◦
S) = σpS(R◦

S) and p ∈ σS
ap(LT )

= σS
ap(L

◦
T ) = σpS(L◦

T ).

Thus by the definition of point spectrum q ∈ σpS(R◦
S) and p ∈ σpS(L◦

T ).
Therefore, there exists A,B ∈ B(V R

H
) with A �= 0 and B �= 0 such that

A(S◦ − q) = 0 and (T ◦ − p)B = 0. Hence, by Proposition 3.2, we have
((S◦)† − q)A† = 0 and B†((T ◦)† − p) = 0. Hence, by Proposition 3.2,
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((C(S, T )◦)† − q + p)A†B† = ((L◦
S)† − q)A†B† − ((R◦

T )† − p)A†B†

= ((S◦)† − q)A†B† − A†B†((T ◦)† − p) = 0.

Therefore q − p ∈ σpS((C(S, T )◦)†). By proposition 4.2, q − p ∈ σpS((C(S,
T )◦)†) = σpS((C(S, T )†)◦). Now by propositions 4.5 and 3.18, we have

q − p ∈ σpS((C(S, T )†)◦) = σS
ap(C(S, T )†) = σS

su(C(S, T )).

Hence σS
su(S) − σS

ap(T ) ⊆ σS
su(C(S, T )), which completes the proof of (c).

To establish (a), let S, T ∈ B(V R
H

). Since LSRT (A) = RTLS(A) = SAT
for all A ∈ B(V R

H
), LS ,RT ∈ B(B(V R

H
)) commute. Let q ∈ σS(LS), then if

ker(LS) �= {0}, there exists A ∈ B(V R
H

) such that A �= 0 and Rq(LS)(A) = 0.
That is

S2A − 2Re(q)SA + |q|2A = (S2 − 2Re(q)S + |q|2)A = 0.

Hence (S2 −2Re(q)S + |q|2)Aφ = 0, for some φ ∈ V R
H

as A �= 0, and therefore
ker(Rq(S)) �= {0}. If ran(Rq(LS)) �= B(V R

H
), then there exists B ∈ B(V R

H
)

such that Rq(LS)(A) �= B for all A ∈ B(V R
H

). That is, S2A − 2Re(q)SA +
|q|2A �= B for all A ∈ B(V R

H
). In other words, Rq(S)Aφ �= Bφ for all A ∈

B(V R
H

) and φ ∈ V R
H

). Hence ran(Rq(S)) �= V R
H

. As a conclusion q ∈ σS(S)
and hence σS(LS) ⊆ σS(S).

Now let q ∈ σS(RT ). If ker(Rq(RT )) �= {0}, then there exists A ∈
B(V R

H
) such that A �= 0 and Rq(RT )(A) = 0, that is ARq(T ) = 0. Thus

Rq(T )φ = 0 for some 0 �= φ ∈ V R
H

, and therefore ker(Rq(T )) �= {0}. If
ran(Rq(RT ))⊥ �= B(V R

H
), then there exists B ∈ B(V R

H
) such that Rq(RT )

(A) �= B, for all A ∈ B(V R
H

). That is ARq(T ) �= B, for all A ∈ B(V R
H

), and
hence IV R

H

Rq(T ) �= B. Therefore ran(Rq(T )) �= V R
H

. Hence we can conclude
that q ∈ σS(T ) and σS(RT ) ⊆ σS(T ). Because C(S, T ) = LS − RT , by part
(c) of Proposition 5.1 we have

σS(C(S, T )) ⊆ σS(LS) − σS(RT ) ⊆ σS(S) − σS(T ).

This establishes the inclusion ⊆ in assertion (a). Now for each A,B ∈ B(V R
H

),
we have

C(LS ,RT )AB = LSAB − ART B = SAB − ABT = C(S, T )AB.

This implies that

C(LS ,RT ) = C(S, T ), ∀S, T ∈ B(V R
H

). (5.1)

On the other hand, using Eq. 5.1, from part (c),

σS
su(C(S, T )) = σS

su(C(LS ,RT )) ⊇ σS
su(LS) − σS

ap(RT ) = σS
su(S) − σS

su(T )
(5.2)

as σS
ap(RT ) = σS

su(T ) and σS
su(LS) = σS

su(S). Similarly from part (b), we get

σS
ap(C(S, T )) = σS

ap(C(LS ,RT )) ⊇ σS
ap(LS) − σS

su(RT ) = σS
ap(S) − σS

ap(T )
(5.3)

as σS
ap(LS) = σS

ap(S) and σS
su(RT ) = σS

ap(T ). Now the inclusions (5.2) and
(5.3) guarantee that the other inclusion in assertion (a) holds,
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σS(C(S, T )) ⊇ σS(LS) − σS(RT ) ⊆ σS(S) − σS(T ).

Therefore the assertion (a) follows. Hence the theorem holds. �
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