Efficient charge collection in hybrid polymer/ TiO2 solar cells using poly(ethylenedioxythiophene)/polystyrene sulphonate as hole collector

Ravirajan, P.^a, Bradley, D.D.C.^a, Nelson, J.^a, Haque, S.A.^b, Durrant, J.R.^b, Smit, H.J.P.^c and Kroon, J.M.^c

^a Department of Physics, Imperial College London, London SW7 2BW, United Kingdom
^b Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
^c ECN, Solar Energy, P.O. Box 1, 1755 ZG, Petten, Netherlands

Abstract

We report a study of the optimization of power conversion efficiency in hybrid solar cells based on nanostructured titanium dioxide and a poly[2-(2-ethylhexyloxy)-5-methoxy-1,4-phenylenevinylene] (MEH-PPV) based conjugated polymer. Charge collection efficiency is enhanced by introducing a poly(ethylenedioxythiophene)/polystyrene sulphonate (PEDOT) layer (under the gold electrode) as the hole collector. Device performance is maximized for a device with a net active layer thickness of 100 nm. The optimized device has peak external quantum efficiencies \approx 40% at the polymer's maximum absorption wavelength and yield short circuit current density \geq 2 mA cm-2 for air mass (AM) 1.5 conditions (100 mW cm-2, 1 sun). The AM 1.5 open circuit voltage for this device is 0.64 V and the fill factor is 0.43, resulting in an overall power conversion efficiency of 0.58%.

Indexed keywords

Engineering controlled terms: Current density; Electric potential; Energy conversion; Nanostructured materials; Optimization; Polymers; Polystyrenes; Solar cells

Engineering uncontrolled terms: Hole collector; Hybrid polymers; Poly(ethylenedioxythiophene); Polystyrene sulfonate

Engineering main heading: Titanium dioxide