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Abstract -An accurate and efficient technique is presented

for obtaining numerical solutions of microstrip structures at

low frequencies. In this approach, a new form of the

electric-field spatial-domain Green's function is used in a

symmetrical form that simplifies the discretization of the

integral equation using the method of moments (MoM).

Hence, a Helmholtz decomposition of the unknown currents

is achieved by applying the loop-tree decomposition of the

currents. However, the MoM matrix thus obtained still

cannot be solved efficiently by iterative solvers due to the

large number of iterations required. Consequently, a

permutation of the loop-tree currents by a connection matrix

is proposed to arrive at a current basis that yields a MoM

matrix that can be solved efficiently by iterative solvers.

I. INTRODUCTION

Scattering solutions using numerical methods have been

studied extensively using various types of full wave

analysis techniques. However, these techniques are having

difficulties because they usually involve the solution of a

very large system of linear equations. In this approach, a

symmetrical form of electric-field spatial-domain Green's

function [1] different from [2] and [3] is applied. Further,

the numerical solution of Maxwell's equations at low

frequencies is plagued with numerous problems. Because

of the discrepant frequency dependence of the solenoidal

and irrotational components of the current when the

frequency tends to zero, a working numerical method has

to include this Helmholtz decomposition and ascribe the

requisite frequency dependencies to the solenoidal and

irrotational components of the current. This decomposition

is achieved by selecting the loop-tree basis [4], [5]. The

use of the loop-tree basis, followed by frequency

normalization, solves the problem of singular matrices at

low frequencies. However, if an iterative solver is used,

the iteration count is usually very large and may even

diverge for some problems. To overcome this problem, a

method of transformation of the matrix equations [6] is

also applied. A general type of layered medium microstrip

structure as shown in Fig.1 is considered for deriving the

layered medium Green's function.

II. FORMULATION

For a geometry of a microstrip structure as shown in Fig. 1,

the spectral domain Green's function can be derived in a

closed form as the sum of TE and TM to z-waves

propagating in the positive and negative z directions. After

some manipulations, the spectral domain dyadic Green's

function G in the region z >0 can be written in a

symmetric form [1] as follows:

z

Dilectric substrate

Ground plane

Fig. 1 Layered medium micrstrip structure
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k is the wavenumber in free space, k 2 = k 2 + k 2 and

RTME is the generalized reflection coefficient of the

layered medium. The spectral integration of (1) yields the

spatial domain Green's function as follows:
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where gfi = f fgfidkxdky and
x x-0

,6 = P, (TE, R), (TM, R) and EM

Using the dyadic electric-field Green's function G for

the layered medium, an electric-field integral equation

(EFIE) can be constructed by enforcing the total

electric-field tangential to the surface S to vanish

z x f(gP (r, r') + gIE9 R (r, r'))J(r')dr'
s

+Z X V | P (r, r')V' J(r')dr'
s

- ZxVj 2g TMR (r,r')V>* J(r')dr'

+ Z VXVj gEMvF * J(r')dr'
s

= -zx Enc(r)

where Einc (r) can be the field of a impinging plane
wave or the field created by a finite source residing within

the microstrip structure. Using the loop-tree basis function

designed for low-frequency problems,
NL NT

J(r') = , 'Ln jLn (r') +Y ITnJTn (r')
n=l n=l

(4)

we discretize the EFIE into a linear algebraic system of

equations, where JLn (r') and JTn (r') are the

divergence-free surface-loop basis and the

nondivergence-free surface-tree basis, respectively. By

substituting (4) into (3), testing with JLm (r) and

JTm(r) , and applying

Vs *JLm(r) =O and Vs *JLn (r') = O, we simplify
to a matrix form as follows:

(5)

where VL =K-JL(r), E (r)b,

VT = -KJT(r),E (r)>,

ZLL = (JL(r), gV (r, r'), JL (r') ,
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ZLT = (JL(r), g (r,r'),JT (r'))

ZTL = (JT (r), gV(r, r'),JL (r)) = T

ZTT= (JT(r), g (r, r'), JT (r'))

- 2 (VS JT (r), gs (r, r'), V' JtT (r'))

gv(r r')= g'(r, r') + gTER(rr')
g (r,r) =(gP(r,r')_gTMR(r rf) +k2gEM) and

A(r), g(r, r'), Bt (r'))

= JA(r)dr. fg(r, r')Bt (r')dr'
Also, JL(rr), JL(r) I L, JT(r'),JT(r) and IT
are column vectors containing JLn(r'), JLm(r) ILn'

iTn (r') JTm (r), and ITn , respectively.

When the frequency 0) - oO (k ->o) , the matrix

equation is unbalanced and ill conditioned. Since the

lower-right block of the matrix becomes dominant in an

electric field equation, frequency normalization can be

used to balance the matrix as below:

L ZLL (0(1)) kZLT (0(w))] F IL (o(1)

LkZ/TL (0()) k TTZ ) L k (0))

FVL(O(CO))1

WJVy(°(o)))
The above matrix equation is balanced and can be solved

by the direct inversion method. However, if the matrix

equation is solved by iterative solvers, the iteration count

is usually very large. Even though the electrostatic part

converges very slowly, the magnetostatic part converges

rapidly. However, the electrostatic problem based on pulse

basis converges rapidly. Therefore, the charge basis arising

from the divergence of the current basis is the main reason

for the matrix ill conditioning. To avoid this, we transform

the electrostatic part in the matrix equation by basis

rearrangement so that the resultant matrix reduces to that

based on the pulse basis in the static limit as given in [6].

Expanding the surface charge densities in terms of pulse
Np

basis p(r) =
, Q, P, (r) and applying the condition

n=l

for the charge neutral system, we obtain the expression for

the surface charge density as follows:

NP -1

p(r) = E [P (r) - CnNp PNP (r)]Qn
n=l

where CnNp = KPn(r)dS PN (r)dS]

N(r) and Q are vectors of length NP -1. Using the

current continuity condition V * J(r) = iop(r) ,

applying Vs JL(r) = 0 and taking the inner product

with P(r), we have

KP(r),V * JI (r) * I = i (KP(r),N'(rb) Q (8)

In this manner, (P(r), N' (r)) is a diagonal matrix and

we can rewrite (8) as

KIT =ioQ (9)

where K is a square matrix. Applying (8) in (6), we

obtain the transformed matrix as below with good spectral

property and the matrix equation converges rapidly.

iZLL Ct)ZLT K 1 FIL --iVL (I(

[k o ZTL ik ZTT K l QI [k2 /

Also a symmetrical form of impedance matrix can be

obtained from (10) as below:

ZLL

-t-1 -

k k 1!I*KL][ Q (11)kkZ 'KZL*

= -1l.IN

III. NUMERICAL RESULTS

Current distribution patterns have been obtained for a 0-
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polarized plane wave impinging the rectangular surface

with the incident angle of 0 =600 & 0i = 00 and a current

source excitation at the center of the surface at the low

frequencies (500- 1000 Hz) as shown in Fig.2a and

Fig.2b, respectively. The current coefficients have been

obtained with less than 100 iterations for the unknowns in

the range of 104. Also a five-fold reduction of the iteration

count has been observed after the basis rearrangement is

executed.

x

Fig.2a: Current distribution pattern when a 0-polarized plane wave

impinging the surface with an incident angle of 0=600 and 0z00.

IV. CONCLUSIONS

A symmetric forn of layered medium Green's function is

successfully used to analyze the microstrip structure at

low frequencies with the help of loop-tree basis functions,

frequency normalization as well as the basis

rearrangement. It converges fast and no low-frequency

breakdown occurs in the numerical computations. It is also

noted that the current distribution patterns shown in Fig.2a

and Fig.2b satisfy the symmetrical properties that ensure

the validity of the simulation results. The present

formulation could be extended to multi-layered medium

structures by deriving the respective special domain

Green's functions. Since the iterative method is

successfully implemented for the low frequency problems,

this method would be capable of solving large-scale low

frequency problems by cautious integration of efficient

algorithms such as Multi Level Fast Multipole Algorithm

(MLFMA).
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Fig.2b: Current distribution pattern when the excitation is given by a

current source at the center.
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