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Abstract— Speaker verification, a biometric identifier, 

determines whether an input speech belongs to the claimed 

identity. The existing models for speaker verification have 

reported performances mainly in English, and no study has 

experimented with Sinhala and Tamil datasets. This study 

proposes a semi-automated pipeline to curate datasets for 

Sinhala and Tamil from videos on YouTube filmed under noisy 

and unconstrained conditions which represent real-world 

scenarios. Both Sinhala and Tamil datasets include utterances 

for 140 persons of interest (POIs) with more than 300 utterances 

per POI under one or more genres: interviews, speeches, and 

vlogs. Moreover, this study investigates how domain mismatch 

affects a speaker verification model trained in English and 

applied to Sinhala and Tamil. Two deep neural network models 

trained in English show significant performance drops on 

Sinhala and Tamil datasets compared to an English dataset as 

expected due to domain mismatch, however, it is observed that 

AM-softmax performed better than vanilla softmax. In the 

future, robust speaker verification models with domain 

adaptation techniques will be built to improve performance on 

Sinhala and Tamil datasets.   

Keywords— Speaker Verification, Sinhala, Tamil, Dataset, 

ResNet, Deep neural networks 

I. INTRODUCTION 

A speaker's voice contains personal traits of the speaker, 
produced by the unique pronunciation organs and speaking 
manner of the speakers, such as unique vocal tract shape, 
larynx size, accent, and rhythm. Therefore, a speaker can be 
identified automatically via a computer using his/her voice, 
known as speaker recognition. Major subtasks of speaker 
recognition include speaker identification and speaker 
verification. Speaker verification aims at validating whether a 
speech sample belongs to a claimed identity based on his/her 
pre-recorded utterances. Moreover, a speaker verification 
system should be able to cope with intrinsic variations such as 
accent, dialect, emotion, aging, and speaking manner, and 
extrinsic variations, such as background noise, music, and 
reverberation. Commercial applications mainly rely on text-
independent speaker verification systems as it is harder to 
mimic an unknown phrase than a known phrase. Some speaker 
verification applications include entry control to restricted 
premises, internet banking, credit card authorization, and 
access to privileged information. 

A large portion of the existing literature on speaker 
verification systems developed and tested on English datasets, 
and there is a dearth of studies in other domains. The National 
Institute of Standards and Technology (NIST) releases 
English datasets annually to encourage participants to build 
robust models for speaker verification [1]. However, NIST’s 
datasets are collected manually in controlled conditions. The 
ICSI [2] and AMI [3] meeting corpora were collected from 
multi-speaker environments under less controlled conditions. 
TIMIT dataset performs artificial degradation to mimic real-
world noise [4]. 

SITW [5] is the first dataset that used multimedia data to 
curate an “in the wild” dataset in unconstrained conditions. 
Although SITW dataset better represents the real world, it 
contains utterances for 299 persons of interest (POIs) only due 
to the difficulties associated with the manual annotation. 
Nagarani et al. proposed a fully automated pipeline to curate 
a large dataset under real-world conditions [6]. They collected 
interview videos of celebrities uploaded to YouTube, shot in 
challenging multi-speaker acoustic environments, including 
red carpet, quiet studios, outdoor stadiums, speeches given to 
large audiences, and others. They released two versions of the 
dataset: VoxCeleb 1 [6] and VoxCeleb 2 [7]. The VoxCeleb 2 
contains utterances for over 6000 POIs, the largest English 
dataset available to date. Another well-known Chinese dataset 
called CN-Celeb [8] was released by adapting the pipeline of 
VoxCeleb with state-of-the-art systems for the sub-
components of the pipeline. Unlike VoxConverse, CN-Celeb 
includes a speech recognition system to double-check whether 
the output from the active speaker verification is consistent. 
The final output is manually verified, and the incorrectly 
marked utterances are discarded. The latest version of CN-
Celeb [9] has utterances for 3000 POIs. CN-Celeb also 
includes 11 variants of genres such as interviews, dramas, 
advertisements, movies, speeches, vlogs, and others. 

No study has experimented with a speaker verification 
system with neither Sinhala nor Tamil datasets. As a result, 
we propose a semi-automated pipeline similar to VoxCeleb 
and CN-Celeb and curate a Sinhala and a Tamil dataset from 
YouTube videos with background noises, laughter, music, and 
reverberation. The datasets include 140 POIs for each, where 
each POI contains one or more of the following genres: 
interview, speech, and vlog. Here, we name the Sinhala and 
Tamil datasets as SLCeleb. The subsequent paragraphs 
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discuss several notable works on speaker identification and 
verification. 

Speaker identification is a task similar to speaker 
verification; however, speaker identification finds the best-
matching speaker for an unknown speech from a database of 
known speakers. Since the systems can be interchangeably 
adapted to speaker identification and verification, the 
literature is almost the same. 

Pioneering work on speaker identification employed 
Gaussian mixture models [10]. GMM is a mixture of 
probability density functions (PDFs) used to model 
multivariate data. GMM clusters data in an unsupervised way 
and gives its PDF. GMM-based speaker modeling gives the 
speaker-specific PDF, in which a probability score is obtained. 
A decision can be made based on the probability scores of the 
speaker GMMs. An alternate model was proposed for the 
speaker verification scheme, called the universal background 
model (GMM-UBM) [11]. 

Campbell et al. introduced GMM supervectors addressing 
the complications in obtaining a fixed number of features from 
speech samples with variable lengths [12]. This fixed length 
‘supervector’ was then analyzed by machine learning 
techniques (e.g., support vector machines). Before the deep 
neural network (DNN) era, factor analysis was applied to 
compute speaker-dependent and session-dependent GMM 
supervectors, known as i-vectors [13]. 

Recently, DNN-based models have revolutionized speaker 
identification. Unlike conventional methods, DNN models 
produce highly abstract embedding features from utterances 
due to powerful feature extraction capabilities. A cutting-edge 
method for DNN-based speaker identification is x-vectors 
[14], an embedding generated by training a Time Delay 
Neural Networks (TDNN). The popular input acoustic 
features for DNN-based speaker identification include 
MFCCs and Mel Filter-Banks. Several variants of the x-
vectors have been introduced lately: ECAPA-TDNN [15] and 
Factorized TDNN [16]. As an alternative to x-vectors, several 
scholars have exploited other DNN architectures, especially 
VGGNet and ResNet [17]. 

Chung et al. conducted a phenomenal study on the impact 
of metric learning-based losses over classification-based 
losses while training speaker recognition models [17]. They 
experimented with Softmax, AM-Softmax, and AAM-
Softmax for classification losses, whereas triplet loss, 
prototypical loss, Generalized end-to-end loss, and angular 
prototypical loss for metric learning objectives. 

Several challenges arise in speaker recognition in the wild, 
such as domain mismatch and noisy problems. Scholars have 
proposed many domain adaptation and noise reduction 
methods to overcome these difficulties. DNN-based speaker 
recognition systems need a large amount of labelled speech 
data to achieve great success. However, sufficient training 
data may not always be available for every new application as 
data annotation is expensive and time-consuming. For 
example, although large-scale datasets are publicly available 
for English, there is a scarcity for other languages. Therefore, 
low-resource speaker recognition should use a large amount 
of auxiliary data to improve performance. However, this 
approach faces a domain mismatch between the low-resource 
data (e.g., Tamil) and auxiliary data (e.g., English). Recently, 
many DNN-based domain adaptation techniques were 
proposed to alleviate the mismatch problem: adversarial 

training-based domain adaptation, reconstruction-based 
domain adaptation, and discrepancy-based domain adaptation 
[18]. 

In addition to the dataset preparation for Sinhala and 
Tamil, this study examines a speaker verification system 
trained in English and how well it performs in other domains, 
such as Sinhala and Tamil. It helps us learn the severity of 
domain mismatch and develop future solutions to mitigate it. 
Two models are adopted: speed-optimized residual networks 
(ResNet) and performance-optimized ResNet. The models 
were trained on VoxCeleb2 (dev) but not on SLCeleb. 
Evaluation is done on both VoxCeleb1 (test) and SLCeleb.  

The rest of the paper is organized as follows. Section II 
provides details on how the SLCeleb is curated and the 
configurations of the speaker verification models. 
Experiments are given in Section III. Results are discussed in 
Section IV. Section V concludes the paper with future works. 

II. METHODOLOGY 

This section explains the SLCeleb annotation pipeline and 
two variants of ResNet-34 [19] architecture for speaker 
verification, namely, speed-optimized ResNet [20] and 
performance-optimized ResNet [20]. Our proposed pipeline 
for speaker verification is shown in Figure 1. An input signal 
is transformed into Mel Filter-Bank energies and fed into a 
ResNet model. The ResNet model provides an embedding 
with a fixed size regardless of the length of the utterance. 
Initially, the ResNet model is trained for a speaker recognition 
task. Once the model is trained, the target speakers' 
embedding is generated and stored in a database. When an 
unknown person claims an identity, an embedding is 
generated based on his voice. If the cosine similarity between 
the embedding and the stored claimed speaker's embedding is 
above a threshold, it is admitted that the person is the claimed 
identity. 

 

Fig. 1. Our proposed pipeline for Speaker Verification. 

A. Speed Optimized ResNet 

Initially introduced for image recognition, Residual 
networks [21] have been adopted for speaker recognition [17]. 
The speed-optimized ResNet used one-quarter of the channels 
in each residual block compared to the original ResNet-34 to 
reduce the computational cost. The number of model 
parameters in speed-optimized ResNet has been reduced to 
1.4 million from 22 million of the original ResNet-34 model 
parameters. Self-attentive pooling (SAP) [22] aggregates 
frame-level features into utterance-level representation by 
giving more weight to the informative frames. This variant is 
referred to as ResNet-SO. Table I displays the architecture of 
the ResNet-SO. 



 

 

TABLE I.  ARCHITECTURE FOR THE SPEED OPTIMIZED MODEL. L: 
LENGTH OF INPUT SEQUENCE, SAP: SELF ATTENTIVE POOLING. 

Layer Kernel Size Stride Output Shape 

Conv 1 3 × 3 × 16 1 × 1 L × 64 × 16 

Res 1 3 × 3 × 16 1 × 1 L × 64 × 16 

Res 2 3 × 3 × 32 1 × 1 L/2 × 32 × 32 

Res 3 3 × 3 × 64 1 × 1 L/4 × 16 × 64 

Res 4 3 × 3 × 128 1 × 1 L/8 × 8 × 128 

Flatten - - L/8 × 1024 

SAP - - 2048 

Linear 512 - 512 

 

B. Performance Optimized ResNet 

The performance-optimized ResNet halves the channels in 
each residual block on its original ResNet-34, containing 8.0 
million parameters. This model is computationally expensive 
compared to the ResNet-SO as the stride at the first 
convolutional layer is removed. Channel-wise weighted 
standard deviation is concatenated with the weighted mean 
using Attentive Statistics Pooling (ASP) [23] to aggregate 
temporal features. This variant is referred to as ResNet-PO. 
Table II displays the architecture of the ResNet-PO.  

TABLE II.  ARCHITECTURE FOR THE PERFORMANCE OPTIMIZED 

MODEL. L: LENGTH OF INPUT SEQUENCE, ASP: ATTENTIVE STATISTICS 

POOLING. 

Layer Kernel Size Stride Output Shape 

Conv 1 3 × 3 × 32 1 × 1 L × 64 × 32 

Res 1 3 × 3 × 32 1 × 1 L × 64 × 32 

Res 2 3 × 3 × 64 2 × 2 L/2 × 32 × 64 

Res 3 3 × 3 × 128 2 × 2 L/4 × 16 × 128 

Res 4 3 × 3 × 256 2 × 2 L/8 × 8 × 256 

Flatten - - L/8 × 2048 

ASP - - 4096 

Linear 512 - 512 

C. SLCeleb Dataset Collection Pipeline 

SLCeleb contains over 300 utterances per POI, totaling 
140 POIs per Sinhala and Tamil datasets. The proposed 
pipeline is semi-automated; however, a human check is 
performed on the output utterances to avoid errors such as an 
utterance may have multiple speakers or an utterance is 
incorrectly labeled. There are six stages in the pipeline, and 
they are discussed below (see Fig. 2). 

a)  Selecting POIs: We manually selected 140 POIs 
(per dataset) from Sri Lankan and Indian celebrities in the 
entertainment, sports, and business sectors or politics or TV 
personalities. We set a constraint that each POI should have 
at least an hour of video on YouTube. 

b) Download videos and crop portrait images: Videos 
for each POI are downloaded from YouTube, where each POI 
may have one or more of the following genres: interview, 
speech, and vlogs. The videos for each POI are chosen 

manually, containing intrinsic variations (i.e., factors 
inherent to the POI – accent, age, emotion, and manner of 
speaking) and extrinsic variations (e.g., background noise, 
music, laughter, channel and microphone effects, 
reverberation) to represent the real-world scenarios. We 
select YouTube since YouTube is an excellent source for 
collecting videos with a variety of genres and with the above-
said variations and videos are available in abundance. 

c) Crop portrait images: The next step is to extract 
portrait images for each POI. Portrait images are needed to 
detect and track faces from videos. A portrait image is a 
matrix that encodes details of a POI’s face to identify it on 
another occasion. It is obtained by clipping the face regions 
of a POI’s various face images and generating a summary 
image. The Retina Face algorithm [24] is used to obtain the 
portrait. CNCeleb uses ten pictures for each POI regardless 
of the videos. Our preliminary experiments revealed that 
when the pipeline is employed on a video, taking screenshots 
of the POI from that video at several timestamps increases the 
precision. The reason is that the face of a POI changes over 
time, and the POI may wear ornaments, put on makeup, or 
have different hairstyles, so a global portrait would not work 
for each video. It is necessary to have local portraits for each 
video. So, we extract ten face images per POI per video. 

d) Face Detection and Tracking: First, detect all faces 
appearing in each video frame using RetinaFace. Then 
identify if the target POI appears in each video frame by 
comparing the faces with the POI portrait. The facial 
comparison is performed using the ArcFace face recognition 
system [25]. Later, MOSSE face tracking system [26] is 
performed to produce face streams. 

 
Fig. 2: Data Annotation Pipeline for curating Sinhala and Tamil datasets. 

e) Active Speaker Verification: This sub-module is 
used to verify whether the speech comes from the POI. 
Sometimes, the POI is on the frame, but the speech comes 
from another person in the frame or even from someone who 
is not in the frame. A SyncNet model [27] is applied to check 
whether the stream of mouth movement and a stream of 
speech are synchronized. Stream of mouth movement is 
extracted from the face stream produced by the MOSSE 
system. 

f) Human Check: With the pipeline, our system can 
crop several utterances of a particular POI for each video. The 
end of a crop most likely happens when the face of the POI 
disappears from the frame or the POI stops talking. Once the 
utterances are collected, the human check begins. The 
objective of the human check is to resolve discrepancies. This 



 

 

process is straightforward: select an utterance if it belongs to 
the target POI only or discard it. 

III. EXPERIMENTS 

A. Configurations and Details for the Speaker Verification 

Model 

The audio samples are converted to 64-dimensional log 
Mel Filter Bank energy features with a window size of 25ms 
and a shift size of 10ms. The training is done using utterances 
of at least 3 seconds. During the evaluation, a random sample 
with the size of 2 seconds from each utterance is extracted. 

Evaluations are performed on RestNet-SO and ResNet-PO 
models with two different loss functions: Softmax and 
Additive Margin Softmax [17]. We report the results for 
VoxCeleb1 (test) and SLCeleb. 

We adopt a publicly available PyTorch-based Speaker 
Recognition system [17] and modify it to accommodate 
speaker verification. Gradients are calculated and updated 
using categorical cross-entropy loss and Adam optimizer. The 
initial learning rate of the Adam optimizer is set to 0.001. A 
scheduler is used to decay the learning rate by 5% after every 
ten epochs. The models are trained using Nvidia T4 GPU with 
16GB memory for 60 epochs with a batch size of 200. 

B. Creation of SLCeleb (test) Trial List 

Experiments are conducted on Sinhala and Tamil datasets of 
the SLCeleb, independently. For preparing a trial list for 
evaluating speaker verification, utterances of 40 POIs per 
dataset are used. The utterances of the remaining POIs have 
not been utilized in this paper. One hundred utterances per POI 
are selected to create the trial list. Moreover, each utterance is 
duplicated eight times. For example, the trail list for the 
Sinhala dataset itself contains 32,000 utterances (40 × 100 × 
8). A set of two utterances are selected out of the pool of 
32,000 utterances, where duplicate pairs are discarded. 
Eventually, a set of trail pairs are generated (positive if both 
utterances belong to the same POI; negative if the utterances 
are drawn from different POIs). Thus, we created 34,377 
positive pairs and 1,511 negative pairs for the SLCeleb-
Sinhala test dataset. 

C. Evaluation Criteria 

The results are reported in two metrics: Equal Error Rate 
(EER) and minimum Detection Cost Function (minDCF) [1]. 
Lower values mean better performance for both metrics. 

IV. RESULTS AND DISCUSSION 

Table 3 compares the performances of ResNet-SO and 
ResNet-PO models on the VoxCeleb1 test dataset. The AM-
Softmax achieves a better result than the vanilla softmax loss 
function. Moreover, ResNet-PO performs better than ResNet-
SO. 

TABLE III.  PERFORMANCE ON VOXCELEB 1 (TEST) ON RESNET-SO 

AND RESNET-PO. 

Dataset Loss 
ResNet-SO ResNet-PO 

EER minDCF EER minDCF 

VoxCeleb1 
(test) 

Softmax 6.14% 0.4158 5.94% 0.4382 

VoxCeleb1
(test) 

AM-
Softmax 

3.52% 0.2243 3.31% 0.3513 

TABLE IV.  PERFORMANCE ON SLCELEB TAMIL (TEST) ON RESNET-SO 

AND RESNET-PO. 

Dataset Loss 
ResNet-SO ResNet-PO 

EER minDCF EER minDCF 

Tamil (test) Softmax 10.70% 0.5814 10.3% 0.4977 

Tamil (test) 
AM-

Softmax 
7.23% 0.3914 6.78% 0.4662 

 

Table 4 and Table 5 compare the performances on 
SLCeleb (Tamil) and SLCeleb (Sinhala), respectively. The 
results emphasize the benefits of using AM-Softmax over 
vanilla Softmax. Vanilla Softmax penalizes classification 
error, but it cannot inform the model to increase inter-speaker 
distance (the latent space distance between different speaker 
embedding) while minimizing intra-speaker distance (the 
latent space distance between the same speaker embedding). 
AM-Softmax alleviates this problem due to the addition of 
cosine margin. Furthermore, the results  reveal that ResNet-
PO performs better than ResNet-SO. The reason is that the 
ResNet-SO has significantly lesser parameters than the 
ResNet-PO and hence loses some fine-grained data. 

TABLE V.  PERFORMANCE ON SLCELEB SINHALA (TEST) ON RESNET-
SO AND RESNET-PO. 

Dataset Loss 
ResNet-SO ResNet-PO 

EER minDCF EER minDCF 

Sinhala 
(test) 

Softmax 11.96% 0.6979 10.24% 0.6386 

Sinhala 
(test) 

AM-
Softmax 

7.71% 0.4158 7.29% 0.4929 

 

Since the models were trained solely in English, we 
observe a substantial performance drop in SLCeleb due to 
domain mismatch. This problem could be alleviated by 
training the model on SLCeleb. 

V. CONCLUSIONS 

This paper introduced Sinhala and Tamil datasets to 
investigate how domain mismatch affects a deep neural 
network-based speaker verification model trained solely in 
English. The datasets were curated using unconstrained videos 
uploaded on YouTube by proposing a semi-automated 
pipeline. The speaker verification evaluation was conducted 
on two variants of the ResNet model trained in English (speed-
optimized ResNet and performance-optimized ResNet) using 
English, Sinhala, and Tamil datasets. Both model variants 
were tested with vanilla Softmax and AM-Softmax loss 
functions. The following conclusions were drawn: model 
performs poorly in Sinhala and Tamil than in English, 
performance-optimized ResNet performs better than speed-
optimized ResNet, and AM-Softmax performs better than 
vanilla Softmax, regardless of the dataset. In the future, we 
will focus on building a robust speaker verification model with 
domain adaptation techniques to bridge the performance gap 
between English, Sinhala, and Tamil datasets. 
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