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A B S T R A C T   

For intensive food production, a range of chemical compounds are used to increase production, reduce the 
amount of weeds, and prevent pest infestation. Therefore, agricultural wastewater discharge to water bodies 
creates human health and environmental risks. This highlights the need for technologies to remove organic and 
inorganic pollutants, where adsorption using carbon-based materials has emerged as a cost-effective and 
promising alternative for agricultural wastewater treatment with high removal efficacy and alignment with the 
circular economy concept by generating value-added products, achieving energy conservation and reducing the 
environmental footprint. Among the different adsorbent materials, hydrochar (HC) has attracted attention 
because, compared to the thermal processes used for synthesizing other carbon-based materials, it requires 
relatively milder production conditions and possesses higher adsorption capability for water pollutants. Although 
HC holds advantages for the adsorption of water pollutants, HC modification using different methods has been 
found to improve the properties, including adsorption capacity. Accordingly, engineered hydrochar (EHC) has 
attracted research attention. However, past research publications show that the investigations have focused on 
material characterization and removal rates, with little knowledge created of the environmental impacts of HC 
production, application, and disposal. This study reviews current knowledge on EHC synthesis, characteristics, 
water treatment applications, and life cycle analysis. Initially, production methodologies were investigated to 
understand their influence on key surface physical and chemical characteristics. This was followed by assessing 
EHC efficacy for water and wastewater treatment. Finally, the environmental footprint of EHC production, 
application, and disposal was evaluated to identify critical knowledge gaps and to provide recommendations for 
future research.   

1. Introduction 

Agricultural production is relevant to the current water crisis 
because of significant freshwater consumption [1] and the resulting 
wastewater containing diverse organic and inorganic pollutants [2–6]. 
Developing effective agricultural wastewater treatment technologies, 
therefore, meets a significant need to ensure water security [5,7,8]. 
Different agricultural wastewater treatment technologies have been 
proposed, among which adsorption using engineered materials has 
gained interest because of its low cost and ease of use [2,9–12]. Despite 

high pollutant removal efficiency, some adsorbent materials (e.g., car
bon nanotubes) possess a significant environmental footprint generating 
concerns about their sustainable full-scale production and application 
[13–18]. To avoid these undesirable indirect consequences, adsorbent 
production should be aligned with the circular economy concept, 
creating value-added products, extending the life cycle for achieving 
energy conservation and reducing the environmental footprint in line 
with Sustainable Development Goal 6 (SDG6) (clean water and sanita
tion) and other SDGs related to sustainable and clean production, and 
waste valorization [19–22]. 
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Some carbon-based materials (CBMs) have gained attention because 
their production is based on using waste biomass as feedstock, requires 
relatively mild production conditions [19,23–26], and generates key 
properties which play major roles influencing their effectiveness in 
environmental applications [27–31]. Hydrochar (HC) is a CBM pro
duced using hydrothermal carbonization (HTC) that requires mild 
temperature conditions (180–250 ◦C) compared to other thermal pro
cesses used for CBM production [32–34]. HC is reported to have the 
ability to adsorb organic and inorganic contaminants. This suggests its 
high potential for use as an adsorbent [35–37]. Compared with other 
CBMs, HC possesses relatively low porosity and specific surface area, 
showing seemingly lower pollutant adsorption rates [38,39]. However, 
HC can be activated/modified [40] to improve its properties for 
different applications (e.g. water treatment, carbon capture, catalysis, 
and energy storage) [19,41]. The activated/modified HC, usually 
termed engineered HC (EHC), has been found to hold advantages for the 
adsorption of water pollutants. Most past studies which have focused on 
EHC have been devoted mainly to material characterization and 
pollutant adsorption rates with little information available on the 
environmental impacts and life cycle of production/application [42]. 

In this study, state-of-the-art methodologies for EHC production 
were investigated to assess its environmental footprint and its fit to the 
circular economy concept. The key physical and chemical characteristics 
of EHCs were evaluated to assess their effectiveness for agricultural 
wastewater treatment applications. Further, the life cycle analysis (LCA) 
of different EHCs was investigated to understand the current state of 
knowledge, identify critical knowledge gaps, and provide recommen
dations for future research. 

2. HC production processes 

HC is generated from biomass using HTC in the 180–300 ◦C tem
perature range and autogenous pressure (2–16 MPa) [43,44]. Cellulose- 
or hemicellulose-related biomass is the most commonly reported feed
stock. HTC has been suggested to break down biomass through poly
saccharide hydrolysis into smaller oligosaccharides and 
monosaccharides (e.g., glucose and xylose) [45]. Subcritical water 
conditions in HTC convert monosaccharides into intermediate organic 

compounds through isomerization, dehydration, fragmentation, and 
condensation reactions (Fig. 1). Glucose and xylose isomerization re
actions produce fructose and lyxose [46], while its decomposition leads 
to organic acids (e.g., acetic, lactic, propionic, levulinic, and formic). 
Glucose dehydration leads to furfural-related structures which decom
pose in aldehydes, phenols, and carboxylic acids [47]. Aldol condensa
tion and intermolecular dehydration produce furfural condensation and 
polymerization [47] and, subsequently, HC [48–50] with combined 
polyaromatic/polyfuran structure [51]. 

The influence of feedstock composition on HC chemical and physical 
characteristics has been explained using HTC biomass transformation 
pathways [52] [20,53,54]. For example, the production of homoge
neous HC from solid waste, a freely available and low-cost feedstock has 
been identified as having significant drawbacks related to the presence 
of biomass with mixed long- and short-chain organic structures [19,20]. 
To produce homogenous HC, biological biomass reduction has been 
suggested [55–57]. Nevertheless, only a few studies have focused on 
understanding the role of feedstock chemical and physical properties on 
HC characteristics, which constitutes a significant knowledge gap that 
merits further attention. This is because an in-depth understanding of 
the influence of feedstock on HC characteristics will allow the selection 
of the most suitable biomass for a specific application and for identifying 
feedstock modifications to optimize HC performance. 

3. Modification of HC characteristics 

Controlling HC characteristics by limiting feedstock type may 
involve significant difficulties because not all biomass would be 
appropriate or its cost may limit feedstock usage. Therefore, identifying 
abundant, low-cost, and reliable biomass is necessary for efficient HC 
production. In addition, suitable in-situ or post-production modifica
tions should be considered when the resulting product lacks requisite 
performance characteristics. 

The modification of HC properties by changing carbonization tem
perature and residence time has been reported to have generated ma
terials lacking adsorption capacities to compete with other CBMs. 
Therefore, further modification processes (e.g., alkali or acid activation) 
to produce EHCs have been explored to enhance the adsorption of 

Fig. 1. Schematic of HC formation mechanisms. 
(Adapted from Kruse et al., 2013) [53]. 
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pollutants in water [19,20,58–60]. For example, alkali activation with 
KOH has been found to enhance the Pb2+ adsorption capability of EHC 
over five times compared to unmodified HC [35]. 

EHC is prepared using two main pathways, namely, in-situ treatment 
and post-treatment. For in-situ HC modification, acid or alkaline solu
tions are added to the biomass before HTC to promote specific reaction 
pathways [61]. Post-production modifications involve the addition of 
chemical agent(s) to change the surface characteristics after HTC. A 
deeper analysis of how HC production process modification impacts 
adsorption characteristics is discussed in the following sections. 

3.1. Acid/alkaline modification 

In-situ modifications. Adding acid or alkaline solutions before HTC 
accelerates polysaccharide degradation (glucose and furfural produc
tion), enhancing HC adsorptive properties [36,59,62]. When acidic 
conditions are used, protic acids catalyze hydrolysis through nucleo
philic substitution accelerating cellulose transformation to glucose [63]. 
After hydrolysis, dehydration reduces organic molecules (Fig. 1), 
generating EHC through different pathways. Identifying specific acidic 
conditions (e.g., acid type and concentration) to limit uncontrolled 
organic reactions during HC synthesis merits in-depth investigation 
because it could enable the production of HC with tailored chemical and 
physical characteristics appropriate for specific applications [64,65]. 
Very few studies, however, have reported the use of acidic or alkaline 
solutions as solvents for HTC (Table 1). A more in-depth understanding 
of the benefits of in-situ acidic or alkaline modifications before HTC is a 
pending research task that may help to reduce EHC production time 
and/or improve material homogeneity and performance reliability. 

Alkaline conditions lead to saponification during hydrolysis, trans
forming esters into alcoholic and/or carboxylic groups and reducing 
EHC functional groups [66]. Alkali counter ions (e.g., Na+, K+) have 
been reported to produce carboxylate groups on the EHC surface and 
serve as cation exchange sites [67,68]. However, there is a paucity of 
information available on alkaline in-situ modification (Table 1), which 
is another knowledge gap worthy of attention because it would allow the 
adoption of alternative EHC production pathways to achieve enhanced 
properties for advanced applications in water treatment. 

Post-production modifications. Table 2 shows the different post- 
production methods reported using alkali, acidic, or oxidant solutions. 
Alkali post-production activation is the most frequently used method, 
particularly potassium hydroxide because it is well-known for creating 
oxygen-containing surface functional groups on EHC and substituting 
hydrogen in carboxylic groups with potassium [79]. In Table 3, signif
icant surface area and porosity increases are reported for post- 
production treatment with enhanced HC properties depending on the 

synthesis method adopted. Acidic activation consistently produces a 
higher surface area (ca. two-fold) compared to alkaline activation or 
unmodified material (Table 3). However, only a limited number of 
studies were found which have reported using acidic HC activation [34]. 
There is a significant need to understand the benefits and limitations of 
alkali and acidic HC activation, which is considered a pending research 
task that merits further exploration because it can provide essential 
knowledge for improved EHC synthesis methods and pathways for 
customized materials for water treatment. 

3.2. Modification of functional groups 

In-situ modifications. The addition of amino-functional groups has 
been reported to enhance HC's chemical and physical characteristics 
[19,59,99]. However, as shown in Table 1, only a few studies have 
investigated amine HC modification. Ammonium sulfate has been used 
before HTC, impacting long-chain, liquid by-products (e.g., furfural, 5- 
methyl furfural) synthesis pathways and the resulting performance 
was compared with experiments without ammonium sulfate addition 
[40]. Acetic acid was the only HTC by-product identified when ammo
nium sulfate was used for HC modification, suggesting changes in the 
production pathway. No information is available about by-product 
generation using other production conditions. This is considered a sig
nificant knowledge gap that merits further research to better understand 
the effect of nitrogen compounds on the EHC production pathway and 
the enhancement of HC adsorption abilities. 

Post-production modifications. A two-step post-thermal modifica
tion process for EHC has been suggested using acidic or alkaline acti
vation to increase hydroxyl functional groups, followed by amino 
functionalization to increase nitrogen content [100]. This lack of in
formation is considered an interesting research area worthy of attention 
to better understand the influence of different chemical modifications 
for producing EHC with specific functional groups and allowing the 
addition of amine groups leading to the reduction of synthesis steps. 

3.3. Metal functionalized particles 

In situ modifications. Few studies are available on variations of 
chemical and/or physical characteristics after metals addition before 
HTC (Table 1). Iron-induced polymerization and re-arrangement have 
been found to activate functional groups on the HC surface [58]. Cal
cium was found to generate side-chain lignin, ester bond cleavage, and 
carboxyl group deprotonation when added as HTC alkaline treatment 
[74]. Little is known about the effects of other metallic elements (e.g., 
other transition metals, metalloids, rare earths) on HC production. The 
limited information available suggests that performance improvements 

Table 1 
In-situ modifications for EHC production.  

Modification type Reagent Feedstock Thermal treatment Reference 

Acid treatment N-cyclohexyl sulfamic acid Sawdust 190 ◦C; 12 h; O2 [36] 
Acid treatment HCl Small world rabbit food 250 ◦C; 20 h; O2 [62] 
Alkaline treatment NaOH Small world rabbit food 250 ◦C; 20 h; O2 [62] 
Functional group modification Ammonium sulfate Sucrose 200 ◦C; 4 h; O2 [40] 
Functional group modification Triethylenetetramine Glucose 190 ◦C; 48 h; O2 [69] 
Metal immobilization Fe Pinewood sawdust 200 ◦C; 1 h; O2 [70] 
Metal immobilization Fe Pinewood powders 180 ◦C; 20 h; 10 ◦C min− 1; O2 [71] 
Metal immobilization Fe Sewage sludge 180 ◦C; 3 h; O2 [56] 
Metal immobilization Fe Rice straw 200 ◦C; 3 h; O2 [58] 
Metal immobilization La Rice straw 200 ◦C; 4-14 h; O2 [72] 
Metal immobilization Ca Wood powder 200 ◦C; 12 h; O2 [73] 
Metal immobilization Ca Pinewood sawdust 220 ◦C; 4 h; O2 [74] 
Metal immobilization Si/Mg Pine sawdust 180 ◦C; 12 h; O2 [75] 
Functional-coated Ti3AlCl2 Glucose 

Cellulose 
Pinewood sawdust 

180 ◦C; 48 h [76] 

Functional-coated Montmorillonite Microcrystalline cellulose 200 ◦C; 2–24 h; autogenic pressure; O2 [77] 
Functional-coated Zero valent iron Alkali lignin 200 ◦C; 18 h [78]  
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could be achieved using single or hybrid metallic-modified EHCs for 
adsorbing organic pollutants and heavy metals [101]. Accordingly, 
understanding in-situ HC modification with metals is a pending research 
task that merits further investigation to identify alternative production 
pathways and to create EHC for fit-for-purpose applications. 

Post-production modifications. Iron-impregnated EHC has been 
investigated to understand the effect of iron concentration (e.g., 33 vs. 
77 % v/v Fe) on adsorption performance [48]. Post-production modifi
cations were found to generate relatively higher surface area (e.g., 337 
vs. 794 m2 g− 1) and pore volume (i.e., 0.1593 vs. 0.2547 cm3 g− 1) 
compared to in-situ modification. In addition, studies have reported iron 
association with oxygen-containing functional groups during HTC 

leading to improved EHC dispersion. After post-production treatment, 
Fe ions were found attached to hydrophilic groups by electrostatic 
attraction within the outer hydration shell. However, no studies are 
available comparing engineered and non-engineered materials which 
inhibits the evaluation of different impregnation pathways or under
standing chemical and physical characteristics in the resulting EHC. As 
shown in Table 4, only iron has been investigated and information 
concerning other metals and metallic ions remains unavailable. This is 
another significant knowledge gap that merits attention as metallic el
ements are reported to improve the performance of other CBMs for 
different applications [102–104]. 

Using HC to prevent agglomeration and functionalized particle 

Table 2 
Acidic/alkaline treatment and chemical oxidation for HC modifications.  

Chemical treatment Feedstock Chemical Chemical activation Secondary heat treatment Reference 

Alkaline Rattan NaOH HC/NaOH mass ratio 3:4 600 ◦C; 1 h; 10 ◦C min− 1; N2 [80] 
Alkaline Sewage sludge KOH HC/KOH mass ratio 0.5 650 ◦C; 2.5 h; N2 atmosphere [55] 
Alkaline Sawdust, wheat straw, cornstalk KOH HC: 4 gL− 1; [KOH]: 2 N None [81] 
Alkaline Grape pomace KOH HC:10 gL− 1; [KOH]:2 M None [35] 
Alkaline Commercial sucrose KOH KOH/HC mass ratio 1:1–4:1 N2; 300–800 ◦C; 2 h; 10 ◦C min− 1 [79] 
Alkaline Corn cobs KOH 1:10 HC/KOH; [KOH]:3 M 230, 260 ◦C; 0.5 h; O2 [82] 
Alkaline Rice Husk KOH 

NaOH 
1:3–1:6 KOH/HC 800 ◦C; 1 h; N2 [83] 

Alkaline α-D-glucose KHCO3 4,6,8 KHCO3/HC ratio N2; 850 ◦C; 1-5 h; 5 ◦C min− 1 [84] 
Alkaline Sucrose KOH 1:0.25–1:3 HC/KOH 800 ◦C; 2 h; 5 ◦C min− 1; N2 [85] 
Alkaline Hickory wood 

Peanut hull 
KOH 1:1 KOH/HC; 50 % KOH 600 ◦C; 1 h; N2 [34] 

Alkaline Garlic peel KOH 1:2 HC/KOH ratio 600–800 ◦C; 1 h; 2 ◦C min− 1; N2 [86] 
Acidic Orange peels 

D-glucose 
HNO3 33.3 gL− 1 HC; 30, 50,70 % HNO3 None [87] 

Acidic Rice Husk H3PO4 1:4,1:6 H3PO4/HC ratio; 85 % H3PO4 800 ◦C; 1 h; N2 [83] 
Acidic Hickory wood 

Peanut hull 
H3PO4 1:1 H3PO4/HC ratio; 85 % H3PO4 600 ◦C; 1 h; N2 [34] 

Oxidant Sawdust H2O2 10 g HC in 300 mL 20%H2O2 None [88] 
Oxidant Peanut hull H2O2 10 g HC in 300 mL 20%H2O2 None [89]  

Table 3 
Physical characteristics of engineered HC from post-treatment modifications.  

Modification Feedstock Surface area, m2 g− 1 Porosity, cm3 g− 1 Reference 

Unmodified Modified Unmodified Modified 

Alkaline/KOH Garlic peel  306 1262 0.17 0.70 [86] 
Alkaline/KOH Sucrose  33 2604 0.027 1.69 [85] 
Alkaline/KOH α-D-glucose  525 3400 0.22 2.40 [84] 
Alkaline/KOH Sawdust  4.4 0.69 0.013 0.002 [81] 

Wheat straw  9.1 0.42 0.041 0.003 
Cornstalk  8.6 1.84 0.034 0.006 

Alkaline/KOH Glucose  75 1197 0.1 0.74 [90] 
Alkaline/KOH Corn cobs  2.8 5.24 0.005 0.011 [82] 
Alkaline/KOH Commercial sucrose  33 2604 0.027 1.44 [79] 
Alkaline /KHCO3 α-D-glucose  525 3050 0.22 2.10 [84] 
Alkaline/K2CO3 Salix psammophila  6.9 1230 0.041 0.810 [91] 
Alkaline/K2CO3 Rice straw derived  6.22 1334 0.06 1.07 [92] 
Alkaline/KOH Hickory wood  8 222 0.121 0.05 [34] 

Peanut hull  7 571 0.01 0.075 
Acid/H3PO4 Hickory wood  8 1436 0.121 0.028 [34] 

Peanut hull  7 1091 0.01 0.079 
Acid/HNO3 Orange peels  34.1 20.25 0.047 0.042 [87] 

D-glucose  7.3 4.49 0.012 0.012 
Functional group/Protonate amine Bamboo  26.2 11.76 0.089 0.026 [93] 
Functional group/Melamine Glucose  75 148 0.1 0.15 [90] 
Functional group/Triethylenetetramine Glucose  335 313 0.217 0.144 [69] 
Metal immobilization/Fe Salix psammophila  7.16 349 0.006 0.24 [94] 
Metal immobilization/Fe-Ni Salix psammophila  7.16 515–1351 0.004 0.315–0.549 [95] 
Metal immobilization/Fe Salix psammophila  6.86 673 0.041 0.646 [91] 
Metal immobilization/Fe Coffee waste  17.2 34.7 0.59 0.13 [30] 
Metal immobilization/Fe Rice straw derived  6.22 674 0.06 0.72 [92] 
Metal immobilization Rice Husk  44.47 167.17 0.019 0.065 [96] 
Functionalized particles Sawdust  1.52 13.66 0.004 0.043 [97] 
Functionalized particles Sawdust  1.52 2.97 0.004 0.027 [97] 
Functionalized particles Sawdust  1.52 3.73 0004 1.348 [97] 
Biological modification Sawdust  3.24 10.33 – – [98]  
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recovery has been reported in past studies [103,105,106]. For example, 
attaching zero-valent metals (e.g., Fe/Ni) to HC is reported to help 
prevent oxidation [107,108] and particle agglomeration [109]. How
ever, very few studies are available where HC has been used to support 
zero-valent metals (Fe/Ni) [109], clays [97], or semiconductors 
(Ag3PO4) [110]. This knowledge, if available, would help to understand 
the interactions between HC and functionalized particles to reduce the 
material's limitations (e.g., agglomeration) or generate other properties 
that may lead to enhanced adsorption ability. 

3.4. Other engineered modifications 

HC production involves long processing times and uneven heating 
patterns [113]. Alternative heat treatment (e.g., microwave radiation) 
has received increasing attention because it is faster and can provide 
uniform heat transfer [114,115]. Microwave radiation generates selec
tive HC autogenic reactions (i.e., higher acetyl rupturing), which en
ables the fine-tuning of EHC characteristics [115] at lower production 
cost [115,116]. No detailed cost analysis has been reported, and the 
technology readiness level (TRL) remains low preventing fair compari
son with other technologies capable of full-scale HC production. This is 
considered a significant knowledge gap requiring further attention. 
Microwave-assisted HC production has also been reported pointing to
wards an interesting future research avenue for EHC production. 

Using microorganisms to digest organic matter on HC surface is re
ported to increase surface area [98] through alkane conversion via 
anaerobic digestion. The process has been reported to change HC surface 
charge and hydrophobicity, suggesting that chemical activation modi
fications could also be achieved using biological treatment [57]. This 
approach provides the potential to avoid chemical usage, significantly 
reducing the carbon footprint of the process. Consequently, HC pro
duction using biological modifications is a highly interesting research 

avenue requiring further exploration, as minimal research has been 
undertaken to date. 

4. EHC adsorption applications 

4.1. Heavy metal removal 

Heavy metal adsorption using EHC for water treatment (Table 5) is 
reported as highly cost-effective. For example, iron-modified EHC has 
been shown to have high adsorption capacity for Pb and Cd (Qmax = 417 
and 323 mg g− 1, respectively) [109,111]. However, these studies have 
used differing experimental conditions preventing fair comparison. The 
persistent lack of systematic studies with comparable conditions is 
another significant knowledge gap which merits attention because 
reporting on HTC conditions and feedstock used in a study is essential to 
identify specific influences exerted by key variables on EHC character
istics and to assess pollutant adsorption ability and selectivity. 

4.2. Adsorption of organic compounds 

EHC has been reported to be primarily for dye adsorption (Table 6), 
where chemical modifications (acid or alkali), functional modifications, 
and metal immobilization were found to produce encouraging results. 
Nevertheless, the need for systematic studies with comparable variables 
(e.g., hydrochar type, dye structure) remains to be investigated to assess 
the influence of HC modifications and associated structural changes. The 
need for an in-depth understanding of the adsorption mechanisms 
involved [120–122] is considered a significant knowledge gap as this 
knowledge would help to correlate adsorption pathways with HC 
modifications. Once adsorption pathways are known, the processes can 
be influenced by specific modifications (e.g., electrostatic attraction, 
hydrogen bonding) [87]. Other mechanistic pathways (e.g., ion 

Table 4 
Immobilization of metal composites.  

Feedstock Metal Magnetic or non-magnetic Second thermal treatment Reference 

Rice Husk Ni Non-magnetic 800 ◦C; 1 h; O2 [104] 
Pinewood sawdust Fe Non-magnetic 600 ◦C; 1 h; N2 (200 mL min− 1) [70] 
Rice husk Fe/Mn Non-magnetic – [96] 
Rice straw derived Fe Magnetic 1.5 h; N2 (1 L min− 1) [92] 
Sugarcane bagasse Fe Magnetic – [111] 
Salix psammophila Fe Magnetic 700 ◦C; 2 h; N2 (1 L min− 1) [94] 
Salix psammophila Fe/Ni Magnetic 500–800 ◦C; 1.5 h; N2 (1 L min− 1) [95] 
Salix psammophila Fe Magnetic 70 ◦C; 3 h; N2 [91] 
Orange peel Fe Magnetic – [112] 
Coffee waste Fe Magnetic – [30]  

Table 5 
Efficiency of engineered hydrochar for heavy metal removal.  

Modification Contaminant Removal, % Notes Reference 

Acid/N-cyclohexyl sulfamic acid Cu 100 [Cu]0:0–100 mg L− 1; [HC]:0.5 g L− 1; pH:2–9 [36] 
Alkaline/KOH Cd 20–100 [Cd]0:5–300 mg L− 1; [HC]: 2 g L− 1; pH: 2–10 30 ◦C [81] 
Alkaline/KOH Pb 56–100 [Pb]0: 100 mg L− 1;[HC]: 0.4–4 g L− 1; pH: 2–7;25,35,45 ◦C [35] 
Alkaline/KOH NH4

+ 75–88 [NH4+]0:1324 mg L− 1;[HC]:10 g L− 1; pH:4.5–8.5;25, 35, 45 ◦C [82] 
Functional groups/Triethylenetetramine Pb 

Cu 
0–100 
0–100 

[Pb]0: 4 g L− 1; [Cu]0: 4 g L− 1;[HC]:5–1200 mg L− 1;pH: 5; 30 ◦C [69] 

Functional group/Maleylated Cd 35–100 [Cd]0: 40–210 mg L− 1;[HC]: 0.8 g L− 1;pH:2–10; 20–30 ◦C [117] 
Functional group/Polyaminocarboxylated Cu 58–100 [Cu]0:40–220 mg L− 1;[HC]: 0.8 g L− 1;30,40,50 ◦C;pH:2–5 [118] 
Functional groups/Polyethylene imine Cr 

Ni 
25–100 
50–100 

[Cr]0: 20 mg L− 1; [Ni]0: 50 mg L− 1;[HC]: 2.5 g L− 1;pH: 5.5 [100] 

Immobilized material/Bentonite NH4
+ 12–100 [NH4+]0: 200 mg L− 1;[HC]: 1–10 g L− 1;pH: 6; 30 ◦C [119] 

Immobilized material/Ti3AlC2 Cd 
Cu 

60–10 
41–100 

[Cd]0: 5–100 mg L− 1; [Cu]0:5–100 mg L− 1;[HC]:1 g L− 1; 25◦ [76] 

Immobilized material/Lanthanum P 77–100 [P]0: 40,100 mg L− 1;[HC]: 5–4 g L− 1; 25 ◦C [72] 
Immobilized material/Fe Pb 

Cd 
35–100 
32–100 

[Pb]0: 25, 400 mg L− 1; [Cd]0: 25, 400 mg L− 1; [HC]: 0.4–2 g L− 1; 
pHPb: 1.8–7.1; pHCd: 2.2–8.5; 25,30,40 ◦C 

[111] 

Immobilized material/ Zero valent Ni-Fe Pb 100 [Pb]0: 50–500 mg L− 1; [HC]:2 g L− 1; pH:3–6 [109] 
Immobilized material/Calcite Cu 37–100 [Cu]0:30–300 mg L− 1; [HC]: 0.8 g L− 1; pH: 3–6.5 [73]  
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exchange) have been proposed for methyl orange adsorption using HC 
functionalized with quaternary ammonium groups [123]. Despite the 
high efficiency shown by HC for the adsorption of organic and inorganic 
compounds (Tables 5 and 6), little is known about the efficacy of EHC for 
the adsorption of emerging contaminants (Table 6). This is considered 
another significant knowledge gap that merits attention based on the 
successful use of other engineered CBMs for the adsorption of emerging 
contaminants [103,124]. 

5. Life cycle analysis (LCA) 

LCA evaluates the environmental, social, or economic impacts 
associated with all stages of the life cycle of a commercial product, 
process or service. The process collects information that is analyzed 
depending on the major stages of the product/process/service life. 
Environmental LCA (LCA-E) follows a sequence of steps that address one 
or more life stages at a time, starting by setting a goal and scope and 
performing a life cycle inventory followed by a life cycle impact 
assessment (Fig. 2) [125,126]. Once the inventory analysis is completed, 
the impact assessment focuses on classifying the environmental impacts 
of all the processes involved and modeling and translating these into 
potential impacts such as human health, ecosystem quality, climate 
change impacts, and resource usage (e.g., use of non-renewable energy) 
[127]. Fig. 3 illustrates the LCA process and interactions between 
different steps along with different impact categories and associated 
impacts [128]. 

5.1. LCA-E for EHC 

To date, very few studies have been devoted to LCA-E for HC 

production and most of these have focused on broad goals and scope 
(initial LCA steps, Fig. 3), assessing environmental impacts, identifying 
critical production parameters or comparing performance with similar 
materials [128–130] (Table 7). As shown in Table 7, only one study was 
found on LCA-E for EHC where acetic acid was used as a catalyst for EHC 
production [131]. Understanding the environmental impacts generated 
by EHC and unmodified HC production for different boundary condi
tions (e.g., cradle-to-grave, production only) and applying LCA-E is an 
important research avenue worthy of further investigation. 

Energy consumption contributes to HC environmental impacts ac
counting for at least 50 % of the overall greenhouse emissions (GHE) 
[132–134]. As a result, energy conservation is usually a major task when 
investigating HTC and materials with short detention times are 
preferred (Table 7). From Table 1, however, in situ produced materials 
are reported with detention times 3 times longer than other materials 
and, therefore, improving synthesis methods with reduced detention 
time has become an urgent pending research task. Further, energy 
consumption analysis of modified materials prepared using post- 
treatment (see Tables 2 and 4) suggests that a high amount of energy 
is required for the two processes used to produce CBMs. This has sig
nificant negative impacts related to greenhouse gas emissions and seri
ously threatens the environmental viability. Hence, LCA-E studies 
comparing energy consumption for the same material using in situ and 
post-treatment are needed to fill this knowledge gap. 

From LCA-E standpoint, feedstock influences the impacts associated 
with the collection, processing and disposal (i.e., LCA-E inventory) by 
contributing to emissions depending on where feedstock is collected, the 
resources used to move the feedstock from the collection point to the 
processing point [135], feedstock characteristics, and desired EHC 
properties [40,127,134]. 

Table 6 
Efficacy of engineered hydrochar for the removal of organic contaminants.  

Modification Contaminant Removal, % Notes Reference 

Acid/HNO3 Methylene blue 0–100 [MB]0:0.1–1.0 g L− 1;[HC]: 2 gL− 1; pH: 2–11; 10, 30,50 ◦C [87] 
Acid/N-cyclohexyl sulfamic acid Benzotriazole 85–100 [BTA]0:0–0.1 g L− 1; [HC]: 0.5 gL− 1; pH: 2–9 [36] 
Alkaline/NaOH Methylene blue 82–100 [MB]0:25–350 mg L− 1; [HC]: 0.8 g L− 1; pH: 3–11;30 ◦C [80] 
Functional groups/Triethylenetetramine Acid Red 1 

Methylene green 5 
0–100 
0–100 

[AR1]0:4gL− 1;[MG5]0:4gL− 1; [HC]:5–1200 mgL− 1; pH: 5;30 ◦C [69] 

Functional groups/Protonated amine Methyl orange 61–100 [MO]0: 0.3–1.2 gL− 1; [HC]:0.8 g L− 1; pH:4–12 [93] 
Functional group/Maleylated Methylene blue 70–100 [MB]0:0.5–1.3 g L− 1;[HC]:0.8 g L− 1;pH:2–10;20–30 ◦C [117] 
Functional group/Quaternary ammonium Methyl orange 34–100 [MO]0: 0.2–1 g L− 1;[HC]: 0.4,1 g L− 1; pH:6.2–6.7; 30, 40, 50 ◦C [123] 
Functional group/Polyaminocarboxylated Methylene blue 83–100 [MB]0:0.4–1.2 mg L− 1;[HC]: 0.8 g L− 1; 30, 40, 50 ◦C; pH:2–10 [118] 
Immobilized material/Fe Malachite green 50–100 [MG]0:125,187,250 mg L− 1; 

[HC]:0.5 g L− 1;25,35,45 ◦C;pH: 2–12 
[91] 

Immobilized material/Fe-Mn 17 β-estradiol 31–100 [E2]0:0.2–8 mg L− 1;[HC]: 0.05 g L− 1;pH:3–12; 28 ◦C [96] 
Immobilized material/Fe Triclosan 38–100 [TCS]0:10–40 mg L− 1; [HC]: 50 mg L− 1; pH:3–10 [92] 
Immobilized material/Fe Tetracycline 31–100 [TC]0:5–80 mg L− 1; [HC]: 1 g L1;25–43 ◦C [94] 
Immobilized material/Fe Triclosan 100 [TCS]0:10–50 mg L− 1;[HC]: 500 mg L− 1;pH:2–4; 30 ◦C [95]  

Fig. 2. Steps of an LCA.  
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LCA-E boundaries are defined depending on the process selected for 
analysis (Fig. 4) [136]. When the LCA-E boundary focuses on EHC 
production, feedstock particle size has been found to dictate the required 
pretreatment [137,138] involving higher energy consumption for small- 
size feedstock. Some biological pretreatments (e.g., enzymatic, anaer
obic digestion) can generate small-size particles without increasing the 
environmental impacts [125,133,139]. However, very little is known 
about these approaches and further research is required to better un
derstand the trade-offs involved which is also identified as a knowledge 
gap requiring further investigation [98]. 

HTC generates gas, liquid and solid by-products from which only the 

solid (i.e., HC) product has been studied with some detail. Only a limited 
number of studies are available where the other two phases have been 
investigated [40], which makes the information available on EHC pro
duction inadequate for a comprehensive LCA-E. The three main by- 
products must be included to realistically identify the overall environ
mental impacts [132,140]. For example, in some cases, the generated 
biogas mix could be recycled for heating thereby reducing the envi
ronmental impacts [131], while in some others, the feedstock (e.g., 
poultry litter), can produce toxic gases resulting in negative environ
mental impacts (e.g., H2S, NOx, SO2) and may not be suitable for HC 
production [141]. Liquid phase by-products, depending on their chem
ical composition, could be distilled to recover valuable components with 
the potential for reuse [127,129,141]. 

Few studies have analyzed LCA-E for EHC with a focus on agricul
tural applications with most of them reporting significantly low envi
ronmental impacts [126,140]. No studies on LCA-E for EHC applications 
in water treatment are available, generating a significant knowledge gap 
worthy of attention as the potential for reuse of exhausted materials has 
been suggested for enhancing agricultural production. 

6. Conclusions 

EHC production and application for water treatment is a continu
ously expanding research field. Significant knowledge gaps remain 
constraining wider EHC applications. The following are the main find
ings of this study:  

• EHC is used for organic and inorganic contaminants adsorption. It is 
considered an environmentally friendly biosorbent with relatively 
low environmental impacts compared to other CBMs. Nevertheless, 
environmental impact analysis is needed to ensure a fair comparison 
with other similar materials and for use in different treatment 
applications.  

• In-situ HTC produces EHC through selective production pathways. 
However, the way different key factors influence production 

Fig. 3. LCA steps and interactions and different impact categories and associated impacts.  

Table 7 
LCA studies on EHC.  

Feedstock HTC treatment EHC 
application 

Reference 

Olive mill 
waste 

200, 225. and 250 ◦C, 2 h Energy 
production 

[125] 

Poultry litter 180–250 ◦C, 1:3 s/w ratio, 1 h Energy 
production 

[141] 

Food waste Enzymatic pretreatment, 150, 
250, 350 ◦C, 1:4 s/w ratio, 20 
min 

Energy 
production 

[133] 

Sewage sludge 220 ◦C, 4 h Agriculture, 
Energy 

[132] 

Sewage sludge 170, 210 ◦C, 2,10 h Agriculture, 
Energy 

[126] 

Olive Pomace 170, 210 ◦C, 2, 10 h Energy [134] 
Sugarcane 

bagasse 
240 ◦C, 30 min Energy [130] 

Sewage sludge 208◦ C, 1 h Energy [139] 
Peat moss 

Miscanthus 
240 ◦C, 15 min Energy, 

Agriculture 
[140] 

Chlorella 
vulgaris 

180–220 ◦C, 45 min, 10 wt% 
acetic acid 

Energy [131] 

Green waste NR Energy [127] 
Food and 

packing 
225, 250, 275 ◦C, 4, 16, 96 h Energy [129]  
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pathways and constraining synthesis process optimization remains 
poorly understood.  

• Post-treatment modifications are the most frequently reported for 
EHC production. However, better in-depth knowledge of the syn
thesis process and standardized methods are needed.  

• LCA-E has been used to identify the environmental impacts of CBM 
production. Only a limited number of LCA-E studies on HC and EHC 
production are available, resulting in a dearth of knowledge and 
significantly constraining the assessment of the factual contribution 
of EHC to the circular economy.  

• EHC materials' hazards analysis is a factor to be considered in LCA-E. 
However, little is known on the topic, highlighting a significant 
knowledge gap because LCA-E cannot be accurately undertaken 
without toxicity information.  

• Narrowing down LCA-E to the production process for EHC could 
create an acceptable approach. Nevertheless, process boundaries 
should encompass feedstock collection and process application to 
better understand the environmental benefits of a specific material. 
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