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Predicting compressive strength of cement-stabilized earth 
blocks using machine learning models incorporating cement 
content, ultrasonic pulse velocity, and electrical resistivity
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ABSTRACT
The quality monitoring technique for Cement stabilised earth 
blocks (CSEBs) is so challenging that it is often neglected. This 
study has investigated the possibility of using machine learning to 
predict the compressive strength of CSEBs based on cement con-
tent, electrical resistivity and Ultrasonic pulse velocity (UPV) as 
a potential way to enhance quality control. The study considered 
three types of soil and different cement content in the preparation 
of CSEBs with 10 different cement-soil mixtures. Various machine 
learning models were proposed to predict the compressive 
strength of CSEBs. The models were evaluated using 180 experi-
mental datasets, and the best model for predicting the compressive 
strength of CSEBs was selected. The ANN and BTR models per-
formed better than the other machine learning models tested in 
this study for predicting the compressive strength of CSEBs. The 
results show that a combination of cement content, electrical resis-
tivity and UPV can be used to assess the quality of CSEBs more 
accurately, which can contribute to the knowledge base and be 
applied in the real world. Materials scientists and engineers can use 
reliable predictive models to assess the strength properties of both 
new and old brick structures without damage or loss of use.
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Introduction

Masonry blocks are a crucial element of the construction industry, providing a strong 
and reliable foundation for walls and other structures. Although fired clay brick and 
concrete blocks are mostly used as masonry units for house construction, they are 
environmentally unfriendly materials. The preparation of raw materials and produc-
tion of these materials has high energy embodied and CO2 emissions [1]. In recent 
years, cement-stabilised earth blocks (CSEBs) have become an alternative option for 
masonry house construction due to their favourable aspects such as being economical, 
environmentally friendly, and providing better thermal comfort [2,3]. However, their 
mechanical characteristics are significantly affected by the characteristics of the soils 
used for their production. Also, they are widely used in rural areas where masonry 
unit production and house construction are done by homeowners themselves [4]. The 
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production of CSEBs requires careful consideration of a variety of factors beyond just 
the cement content. In addition to controlling the cement content, it is essential to 
carefully select the soil, manufacture the blocks properly, and construct the house 
with attention to detail. While there are many recommendations for suitable soil 
types and production procedures, few focus on assessing the quality of CSEBs [5]. 
The best way to ensure quality is through lab testing, but access, cost, and time can be 
significant challenges, especially in rural areas. Therefore, it is crucial to prioritise 
quality control measures at every stage of the process to ensure safe and sustainable 
housing construction.

In general, the measurement and estimation of the compressive strength of CSEBs is 
based on experimental testing, mathematical modelling and machine learning models. 
Experimental testing is a useful system as it produces results that can be replicated. 
However, it must be tightly controlled to be useful. It can also be easily influenced by 
internal or external factors that can change the results obtained. Mathematical equations 
can provide a quick and easy way of predicting compressive strength. However, they are 
only as good as the data used to generate them. If the data is not representative of actual 
conditions, the predictions may not be accurate. Machine learning models can provide 
accurate compressive strength predictions. They can also learn from new data and 
improve their predictions over time. However, they require large amounts of data to 
train and can be difficult to interpret.

There are several methods for testing the compressive strength of earth blocks, varying 
specimen size, loading rate and destructive or non-destructive testing. The cube speci-
men, the half-block stacked specimen and the full-size block specimen are used to 
measure the compressive strength of CSEBs. In addition to common laboratory tests 
such as the uniaxial compression load test, some pioneering work has recently been 
published on the use of mildly destructive or non-destructive techniques. For destructive 
techniques, Lombillo et al [6] used the flat-jack, hole-drilling and mini-pressure-metre 
techniques to assess the stiffness and deformation of rammed earth in situ. All of the 
above studies used destructive testing, which involved testing a large number of blocks 
and consuming more energy, time and material. It may therefore be uneconomical [7].

As such, predicting the compressive strength (fc) of CSEBs is a significant aspect of 
ensuring the quality of any building project. Non-destructive testing (NDT) provides an 
effective alternative option for predicting the fc of masonry. NDT is a testing technique 
that has the potential to measure material properties without damaging the sample being 
tested. These methods consist of X-ray testing, infrared thermography, acoustic emission 
testing, and ultrasonic testing [8,9]. NDT can be used to measure a variety of character-
istics such as compressive strength, tensile strength, elastic modulus, and thermal proper-
ties [10,11]. The use of NDT to predict the fc of masonry has numerous advantages. For 
example, it eliminates the need for expensive and time-consuming destructive testing and 
can be used on both new and existing structures. Additionally, NDT can provide a precise 
measurement of the fc of construction material, which is closer to traditional destructive 
testing methods [12]. This is because NDT can measure a material’s compressive strength 
from a variety of angles, allowing for a more comprehensive assessment of the material’s 
strength.

Several non-destructive test methods can estimate the quality of construction materi-
als [13,14]. Some of these methods, such as rebound hammer, ER and UPV are widely 
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used for concrete because they are simple and easy [15–18]. However, most of the 
research on these methods focused on cement mortar and concrete. But the quality 
assessment of CSEBs based on NDT is limited.

Ksinikota and Tripura [19] developed an empirical formula to predict the fc of 
hollow compressed stabilised earth blocks using UPV measurement. The authors used 
five different cement content and a single soil type for the casting of blocks. They 
developed an empirical formula between UPV (in km/s) and compressive strength (in 
MPa) of blocks as shown in Equation (1)–(3) for different moisture conditions such 
as air dry, oven dry and wet conditions, respectively. The proposed equation shows 
a strong correlation between predicted and experimental fc for all moisture conditions 
(R2 >0.95). 

fc � air dry ¼ 3:924UPV � 2:882 (1) 

fc � oven dry ¼ 6:349UPV � 5:086 (2) 

fc � wet ¼ 2:888UPV � 2:667 (3) 

Sathiparan et al. [5] reported the correlation between ER, UPV and fc of CSEBs. 
Compared with individual correlation, the empirical model developed using both NDT 
measurements improves in correlation among the measured and predicted fc of CSEBs. 
They proposed an empirical formula between ER (in kΩ.cm), UPV (in km/s) and fc (in 
MPa) as shown in Equation (4) and (5) for air-dry and wet conditions, respectively. The 
proposed equation expressed a solid correlation among experimental and predicted fc for 
air dry and wet conditions as R2 equal 0.93 and 0.90, respectively. 

fc � air dry ¼ 0:766� 2:390UPV � E� 0:007 (4) 

fc � wet ¼ 0:548� UPV2:119 � E� 0:150 (5) 

Machine learning (ML) algorithms have become common for predicting the char-
acteristics of building materials [20–22]. Machine learning is the most effective method 
for predicting the properties of construction materials, which depend on many variables 
[23,24]. Moreover, various machine learning (ML) techniques, such as linear regression 
(LR), decision tree regression (DTR), random forest regression (RFR), support vector 
regression (SVR), K-nearest neighbours (KNN), bagging regression (BGR), and others, 
have been used to predict the compressive strength of building materials [25–27]. Several 
studies have used non-destructive testing (NDT) measurements and machine learning 
(ML) techniques to predict the properties of rock [28,29], concrete [30–33] and timber 
[34]. However, there is little research on predicting the compressive strength (fc) of 
CSEBs using NDT measurements and ML techniques.

Therefore, the present study aims to forecast the fc of CSEBs by using two NDT 
measurements (ER and UPV) through ML techniques, to assess the quality of the CSEBs 
without causing damage. The CSEBs were made with ten different combinations of 
cement-to-soil ratios and soil types. Based on the results, the study examined the 
correlations between the cement content, UPV, ER, and fc (dry and wet) of CSEBs by 
using various ML techniques.
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Experimental program

Materials used

Ordinary Portland cement (OPC) was used as a binder. Three different lateritic soil types, 
designated as soils 1, 2, and 3, were selected for the study from university premises in 
Kilinochchi, Sri Lanka. The soil was cleaned of impurities including leaves and tree roots. 
They were passed through 10 mm sieves before being utilised for the experiment. 
Figure 1 displays the physical appearance of the soils.

Figure 2(a,b) illustrate the particle-size distribution of the soils and the correlation 
between dry density and moisture content for each soil type. Soil 3 had the lowest MDD 
of the three soil types. The highest dry densities were attained by soil 2.

Table 1 lists the physical parameters, results of the Proctor compaction test, particle size 
traits, and Atterberg limit for soils as well as the chemical composition of cement and soils. 
While soil 2 was lighter, soil 1 was denser. Soil 1 has a high amount of gravel (18.9%), and 
soil 2 has more fines (4.5%). All soils were found to have SiO2, which is the most common 
oxide, followed by Fe2O3. Another important aspect of the soils’ chemical makeup is their 
low concentrations of Na2O and K2O, except for soil 3, which has 0.78% K2O.

Mix design

The research aimed to predict the fc of CSEBs using NDT measurements. The mortar had 
different mechanical properties and was made from 10 mixtures of varying types of soil 
and cement content. The experiment used four cement contents (8%, 12%, 16%, and 20% 
of soil volume) to make the mortar. Table 2 shows the soil and cement amounts for a one- 
metre cube mix. The water volume for mixing the cement and soil was another vital 
variable. Excessive water would make the mortar weak, while too little water would make 
it stiff and dry. A constant W/C ratio or fixed slump was preferred for consistent 
workability [35]. The study used different types of soil and cement content, so 

Figure 1. The physical appearance of soils used in the experimental program.
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Figure 2. Soil characteristics (a) particle size distribution and (b) test results of proctor compaction.

Table 1. Cement and soil characteristics.
Characteristics Properties Cement Soil 1 Soil 2 Soil 3

Physical properties Bulk density (kg/m3) 1280 1168 1258 1456
Specific density 3.15 2.50 2.35 2.55

Proctor test Optimum moisture content, OMC (%) 6.5 9.2 6.5
Maximum dry density, MDD (kg/m3) 2080 1895 2160

Grain size Gravel (%) 18.9 4.5 4.3
Sand (%) 80.0 90.4 95.2
Silt & clay (%) 1.1 5.1 0.4

Atterberg limit Liquid limit, WL (%) 31.0 27.0 20.8
Plastic limit, PL (%) 21.5 19.4 18.5
Plasticity index, IP (%) 9.5 7.6 2.3

Chemical composition (% wt.) CaO 66.55 0.03 1.13 0.60
SiO2 20.60 76.49 74.23 80.40
Al2O3 4.51 2.49 3.79 2.46
Fe2O3 3.62 4.89 6.49 4.14
MgO 1.17 0.46 0.44 0.19
Na2O 0.40 0.22 0.16 1.30
K2O 0.39 0.21 0.27 0.78

Table 2. Materials requirement for 1 m3 mortar mixture.
Mix Cement (kg) Soil 1 (kg) Soil 2 (kg) Soil 3 (kg) Water (l)

S1–08 148.9 1697.9 240.1
S1–12 215.3 1637.3 288.9
S1–16 277.2 1580.8 334.3
S1–20 334.9 1528.1 376.8
S2–08 148.9 1828.8 290.2
S2–12 215.3 1763.4 337.2
S2–16 277.2 1763.4 337.2
S3–08 148.9 2116.6 240.1
S3–12 215.3 2041.0 288.9
S3–16 277.2 970.6 334.4
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a specific W/C ratio was required for a uniform mixture [36]. The W/C ratio was based 
on the optimal moisture content for the MDD and the cement amount in the mix.

Initially, the cement and soil were dry-mixed thoroughly and water was added and 
mixed well again. The wet mix was transferred into wooden moulds of 100 mm by 100  
mm by 100 mm, and the mix was manually compressed with 25 strokes of a steel rod for 
each of the three layers. After one day, cube samples were removed from the moulds and 
cured. They were stored in a lab environment for 28 days at room temperature (27–33°C) 
for curing. Nine cubes were used to measure each mix’s density and compressive 
strength.

Testing

Ultrasonic pulse velocity
A portable ultrasonic NDT digital indication tester was utilised to measure the ultra-
sound pulse velocity of CSEBs following the American Society for Testing Materials 
(ASTM) C597 [37]. The ultrasonic pulse analyser, PULSONIC model 58-E0046/5, is used 
to measure the velocity of the ultrasonic pulses through the mortar cubes. The equip-
ment’s configuration is shown in Figure 3(a). A portable device that measures the speed 
of ultrasound pulses in materials with a transit time range of 16 ms, a 2 MHz sampling 
rate, a resolution of 0.1 s, and a transmitter output of 1200 V. The data analysis was based 
on the average value from three measurements taken along two horizontal and one 
vertical direction. In this study, a frequency of 54 kHz was used for UPV measurements, 
as it is more suitable for evaluating block properties [38]. The instrument was calibrated 
using a reference bar (25.4 μs) before the start of the test. Vaseline was used as a couplant 
to ensure better contact between the block surface and the transducer. The transducers 
were positioned firmly against the two opposite block surfaces until a stable transit time 
was displayed. The distance travelled by the ultrasound wave and the pulse transit time 
were recorded. UPV measurements were taken in three directions, one in the direction of 
compaction and the other two perpendicular to the direction of compaction, and their 
average is expressed as UPV. A total of 180 blocks were subjected to ultrasonic testing 
and the same were used for mechanical testing. The impulse velocity was calculated using 
Equation (6).

UPV ¼ L=T (6) 

where, UPV = ultrasonic pulse velocity (km/s), L = distance travelled by the pulse 
(km) and T = transit time (s).

Electric resistivity
A non-destructive test equipment was utilised to measure the ER of CSEBs following the 
ASTM C1876 [39] standard. Resipod concrete resistivity metre (38 mm probe spacing) 
model HM-952 is used for measuring the ER of the surface of mortar cubes. It can 
measure the surface resistivity from 1 to 1000 kΩcm [40]. The equipment’s configuration 
is shown in Figure 3(b). The average value from four readings taken on the two sides, the 
bottom, and the top surfaces was used for analysis.
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Compression test
The compression test was carried out using a Universal Testing Machine (UTM) by 
displacement control method as per ASTM C109 [41]. Cubes of 100 × 100x100 mm3 were 
used for the test. The cubes were air-dried for 28 days at room temperature and then 
tested for dry fc. To measure the saturated fc, the cubes were soaked in water for one day 
after 27 days of air-drying and then tested with a 2 mm/min axial load. The test setup is 
illustrated in Figure 3(c).

Machine learning modelling

ML modelling flow

Figure 4 presents the outline of the ML modelling flow chart. A total of 180 data (90 
for dry conditions and 90 for wet conditions) were gathered from the experimental 
program to create a valid model for predicting the compressive strength of CSEBs. 
Linear regression (LR), artificial neural network (ANN), boosted tree regression 
(BTR), random forest regression (RFR), K-nearest neighbours regression (KNN), 

Figure 3. Testing setup (a) UPV, (b) ER, and (c) compression.
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and support vector regression (SVR) are the six algorithms used to predict the 
compressive strength of CSEBs. Although deep learning-based models may provide 
more accurate predictions, due to limited data and the possibility of overfitting, the 
ML models are limited to conventional techniques. It should also be noted that even 
conventional models such as ANN, BDT and RFR provide accurate predictions for the 
data used in this study. The following performance indicators were applied: coefficient 

Figure 4. Working flow chart for machine learning modelling and analysis.
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of determination (R2), root mean squared error (RMSE), and outlier for the accuracy 
of the models.

Machine learning technique

Linear Regression (LR)
The LR model, as specified in Equation (7), is the usual method for predicting the 
compressive strength of CSEBs [42].  

fc ¼ aþ b CCð Þ þ c UPVð Þ þ d ERð Þ (7) 

where fc in MPa, CC in weight fraction, UPV in km/s and ER in kΩ.cm. a, b, c and 
d are model constants.

Artificial Neural Network (ANN)
ANN is an ML tool that can analyse and compute data in a similar way to the 
human brain. It is an ML method that is often used in construction engineering 
to predict the future outcomes of different numerical problems. An ANN model 
has three main layers: input, hidden, and output layers [43,44]. The output layer 
has the compressive strength of CSEB, and the input layer has cement content, 
UPV, and ER. The hidden layer usually has more than two levels. The input and 
output layers depend on the data and the goal of the model, while the hidden 
layer depends on the weight, transfer function, and bias of each layer to other 
layers [45,46]. There is no fixed way to design a network structure. So, the 
number of hidden layers and neurons is found by optimising the parameters. 
The best number of iterations is the one that meets the key criteria of the 
network’s training process: the highest R-value and lowest root mean square 
error (RMSE).

Random Forest Regression (RFR)
Random Forest (RF) Regression is an ensemble learning algorithm that combines the 
outputs of many regression decision trees. Each tree is built with a random vector that is 
chosen from the input variables and has a uniform distribution in the forest [47]. The 
method uses bootstrap aggregation and random feature selection to average the predic-
tions of the forest [48].

Boosted Tree Regression (BTR)
BTR is a method that uses multiple regression trees to make predictions. A regression 
tree is a model that splits the input data into smaller groups based on some criteria and 
then assigns a constant value to each group. Boosting is a technique that improves the 
accuracy of the model by combining many simple trees into one complex tree [49]. 
Boosting works by fitting a new tree to the errors of the previous tree and then adding 
them together to get a better prediction [50]. BTR can handle different types of data, 
nonlinear relationships, and interactions between variables [51].

NONDESTRUCTIVE TESTING AND EVALUATION 9



K-nearest Neighbors (KNN)
KNN is a supervised learning algorithm that can be used for classification or regression 
problems. It works by finding the (in the present study k = 5) closest training examples to 
a new data point and assigning it a label or a value based on the majority vote or the 
average of its neighbours [52]. KNN is a non-parametric method, meaning that it does 
not make any assumptions about the underlying distribution of the data [53]. KNN is 
also a lazy learning method, meaning that it does not have a training stage, but rather 
stores all the training data and performs computation only when a prediction is needed 
[54]. KNN is simple and effective, but it can also be inefficient and sensitive to noise and 
irrelevant features [55].

Support vector machines
Support Vector Machines (SVMs) are supervised learning models that can be used for 
classification or regression problems. They work by finding a hyperplane that sepa-
rates the data into different classes or predicts the value of a continuous variable [56]. 
SVMs are based on the idea of maximising the margin between the data points and 
the hyperplane, which makes them robust and effective in high-dimensional spaces 
[57]. SVMs can also use different kernel functions to perform non-linear classification 
or regression by mapping the data into higher dimensional feature spaces [58]. SVMs 
are versatile, memory efficient, and have strong theoretical foundations, but they also 
have some disadvantages, such as being sensitive to noise and outliers, requiring the 
careful choice of parameters and kernels, and not providing probability esti-
mates [59].

Performance indicator

To evaluate the performance of the predicted models, Coefficient of determination (R2) 
and Root Mean Squared Error (RMSE) were used, which are defined as Equation (8) 
and (9). 

R2 ¼ 1 �
Pn

i¼1 Pi � Eið Þ
2

Pn
i¼1 Ei � �Eð Þ

2 (8) 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 Pi � Eið Þ
2

n

s

(9) 

where, Ei and Pi are the measured and predicted values, respectively; �E is the mean of 
measured values; n is the number of the data used.

In addition, the outliner (OL) percentage is also considered a performance indicator 
by considering the predicted values are outside the 20% error line. The OL % was 
calculated by Equation (10). 

OL ¼
nOL

n
� 100 (10) 

where, nOL is the number of points outside the 20% error line and n is the total amount 
of data.
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Cross-validation

K-fold cross-validation is a method for validating multi-class classification models. It 
randomly divides the dataset into several groups and uses one group for testing and the 
rest for training. In this study, fivefold cross-validation (k = 5) was used to evaluate the 
results. The data set was shuffled and divided into five groups. Each group was used once 
as the test set, while the other four groups were used as the training set. This procedure 
was repeated for all five groups. The average of the five test scores, together with the 
variance, is used as an estimate of the model’s performance.

Experimental results

Figure 5(a,d) illustrate the UPV of CSEBs under dry and wet conditions, which can be 
influenced by various aspects such as cement content and aggregate type, aggregate 
dimension, W/C ratio, transducer spacing, curing age and moisture content [60]. The 
UPV increased with higher cement concentration. Among the soil types, soil 3 had the 
highest UPV for a given cement concentration, while soil 2 had the lowest. The greater 
amount of hydration products resulting from higher cement content filled more voids 
and increased the flexibility of the CSEBs, resulting in faster transmission of ultrasonic 
pulses through them. Soil 2 had a lower UPV value than the other two soil types due to 
inadequate block packing, resulting in reduced density. The study also showed that 
CSEBs saturated with water had a higher UPV. The moisture content of CSEBs has 
a significant effect on UPV. Research suggests that the UPV of mortar increases with 
increasing water content, as reducing the amount of air space in the ingredients can 
increase the UPV [61]. When saturated, water fills the voids in the mortar mix, resulting 
in faster wave motion.

The ER of CSEBs in dry and wet conditions is shown in Figures 5(b,e). According to 
recent studies [62], the ER of CSEBs is affected by several variables such as cement 
content, aggregate type and dimension, W/C ratio, curing age, moisture content and 
porous characteristics. The test results indicate that an increase in cement concentration 
leads to an increase in electrical resistance due to the cement hydration process. More 
cement in the mix produces more calcium silicate hydrate, which fills the pore spaces and 
creates a denser structure. The hydration process and subsequent free water consump-
tion further increase the pore tortuosity for electric current, resulting in an increase in 
soil resistivity [62,63]. In addition, mortar with soil 3 had a higher ER value for specific 
cement content, while mortar with soil 2 had a lower ER value. The study also found that 
the degree of saturation had a significant effect on the resistivity of the soil block [64]. In 
general, wet CSEBs had lower ER due to the presence of water, which is an excellent 
conductor of electricity. As a result, the ER of the mortar decreased as its water content 
increased [62].

Figure 5(c,e) show the fc of the CSEBs in dry and wet conditions. As the 
amount of cement in the mortar increased, so did their fc. Mortar from soil 3 
showed superior strength for a given cement concentration, whereas mortar from 
soil 2 showed lower strength due to weak bonding between the cement paste and 
the aggregates caused by its higher clay and silt content. The cement-colloidal 
structure showed much lower strength than the cement-granular matrix, although 
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the clay or silt minerals react with the cement and tend to become stable. The 
increased sand concentration of soil 3 had a beneficial effect on the fc of CSEBs, 
while cohesive soil aggregates formed during mixing reduced the effectiveness of 
the cement. Due to the increase in pore water pressure and the liquefaction of 
unstable clay in the mortar matrix, the wet fc was found to be lower than the 
corresponding dry fc in all scenarios. This can be attributed to the instability 
caused by the above factors.

Figure 5. (a) UPV, (b) ER, (c) compressive strength for the specimen in dry condition and (d) UPV, (e) 
ER, (f) compressive strength for the specimen in wet condition.
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Statical analysis

The input variables for this study were cement content, UPV and ER, while the output 
variables were fc(dry) and fc(wet). Figure 6 shows the descriptive statistics for the input 
and output data. It shows that the cement content varied between 0.08 and 0.20. For dry 
conditions the UPV varied from 0.27 to 2.61 km/s, the ER varied from 16.4 to 347.0 kΩ. 
cm and the fc varied from 0.77 to 5.82 MPa. For wet conditions, UPV varied from 0.67 to 
3.11 km/s, ER varied from 1.7 to 7.8 kΩ.cm and fc varied from 0.26 to 4.90 MPa.

The study presents a comprehensive set of experimental data and statistical analysis 
was performed to assess the correlation between the variables mentioned. The results 
indicate that there is a significant correlation between UPV and ER, as shown in Figure 7 
using Pearson’s correlation. Furthermore, the relationship between UPV, ER and fc was 
found to be much stronger. In particular, the metrics for dry conditions showed a more 
significant correlation than for wet conditions.

Figure 6. Correlation among independent and dependent variables in dry condition.
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Table 3 shows the full range of experimental data, indicating that ER had 
a greater effect on fc in dry conditions, while UPV had a more significant effect 
on fc in wet conditions. However, ER had no significant effect on fc in wet 
conditions.

Figure 7. Correlation among independent and dependent variables in wet condition.

Table 3. Three-way ANOVA analysis for experimental results.
Source Type III Sum of Squares df Mean Square F Sig. Contribution (%)

fc (dry) CC 53.32 3.00 17.77 25.99 5.48E–12 16.1
UPV 109.62 71.00 1.54 21.35 1.35E–08 13.2
ER 11.76 86.00 1.29 114.48 0.07 70.7

fc (wet) CC 39.83 3.00 13.28 17.39 7.89E–09 35.7
UPV 101.51 67.00 1.52 29.73 1.13E–10 61.0
ER 87.91 67.00 1.31 1.63 0.12 3.3
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Performance of machine learning models

The performance indicators of six ML models are presented in Table 4. Except for the LR 
model, all models accurately predict the fc of CSEBs. The effectiveness of the BTR and 
ANN models in predicting the fc of CSEBs is comparatively good. Although the BTR 
model performs well when considering the total data, the effectiveness of ANN is the best 
for predicting both training and test data. The correlation coefficients of the BTR model 
are 0.973, 0.937 and 0.960 for fc in dry, wet and all conditions respectively. It is closer to 
unity compared to the other models, except for fc in wet conditions, where the ANN 
model shows correlation coefficients with R2 equal to 0.947. A similar trend was observed 
for the other performance indicators (RMSE and α20 index).

Figure 8 shows the predicted and measured values of fc for each of the six machine 
learning models in dry, wet and all conditions. The ANN, RFR and BTR models have 
fewer points outside the 20% error envelope in all conditions. The ANN models had 
outliers for fc of 1.2%, 14.0% and 13.8% in dry, wet and all conditions respectively. The 
RFR model had outliers of 2.3%, 15.2% and 7.5%, while the BTR models had outliers of 
2.3%, 9.3% and 8.1%. Overall, the RFR model is the best option for predicting fc in both 
dry and wet conditions.

Sensitive analysis

Artificial neural networks (ANNs) are complex and non-linear models that can some-
times act as black boxes [65]. Previous studies have shown that SHAP (SHapley Additive 
exPlanations) is a convenient tool for exploring complex machine learning models with 
different parameters [66,67]. Since ANN performed best on the test data, we used SHAP 
to interpret the outputs of the ANN model. The key idea of SHAP is to compute the 
Shapley values for each feature of the sample to be explained, where each value indicates 
the contribution of the corresponding feature to the prediction. Figure 9(a-c) show the 
mean SHAP values for the input parameters based on the ANN technique for fc in dry, 

Table 4. Performance indicator for each ML techniques.
Train Test Total

Condition ML technique R2 RMSE R2 RMSE R2 RMSE OL
Dry LR 0.854 ± 0.009 0.428 ± 0.012 0.811 ± 0.061 0.454 ± 0.044 0.845 0.433 31.8

ANN 0.964 ± 0.013 0.211 ± 0.044 0.970 ± 0.013 0.180 ± 0.046 0.965 0.205 1.2
RFR 0.950 ± 0.020 0.243 ± 0.039 0.940 ± 0.035 0.246 ± 0.049 0.948 0.244 2.3
BTR 0.982 ± 0.004 0.151 ± 0.012 0.936 ± 0.042 0.251 ± 0.048 0.973 0.171 2.3
KNN 0.952 ± 0.008 0.245 ± 0.023 0.957 ± 0.028 0.207 ± 0.051 0.953 0.237 4.5
SVM 0.966 ± 0.009 0.203 ± 0.025 0.949 ± 0.028 0.228 ± 0.047 0.963 0.208 2.3

Wet LR 0.852 ± 0.011 0.418 ± 0.037 0.777 ± 0.134 0.423 ± 0.113 0.837 0.419 47.7
ANN 0.946 ± 0.045 0.236 ± 0.099 0.949 ± 0.025 0.217 ± 0.101 0.947 0.232 14.0
RFR 0.937 ± 0.005 0.272 ± 0.019 0.884 ± 0.044 0.331 ± 0.132 0.926 0.284 15.2
BTR 0.955 ± 0.005 0.231 ± 0.026 0.864 ± 0.056 0.352 ± 0.126 0.937 0.255 9.3
KNN 0.876 ± 0.030 0.379 ± 0.052 0.926 ± 0.030 0.257 ± 0.082 0.886 0.355 26.8
SVM 0.935 ± 0.009 0.277 ± 0.028 0.897 ± 0.027 0.325 ± 0.136 0.927 0.287 15.2

All LR 0.811 ± 0.006 0.509 ± 0.012 0.769 ± 0.086 0.519 ± 0.043 0.803 0.511 60.4
ANN 0.953 ± 0.008 0.253 ± 0.020 0.950 ± 0.024 0.241 ± 0.064 0.952 0.251 13.8
RFR 0.963 ± 0.005 0.225 ± 0.016 0.930 ± 0.021 0.302 ± 0.085 0.956 0.240 7.5
BTR 0.972 ± 0.002 0.197 ± 0.010 0.911 ± 0.014 0.338 ± 0.078 0.960 0.225 8.1
KNN 0.923 ± 0.010 0.326 ± 0.028 0.946 ± 0.019 0.263 ± 0.079 0.928 0.313 21.3
SVM 0.947 ± 0.007 0.270 ± 0.020 0.928 ± 0.024 0.296 ± 0.073 0.943 0.275 21.3
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Figure 8. Predicted fc vs. measured fc using different ML techniques for dry, wet and all conditions.
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wet and all conditions respectively. The results show that ultrasonic pulse velocity (UPV) 
has the highest SHAP value (and thus the most significant influence on the prediction) in 
all conditions. This means that UPV is the most important factor in predicting fc. On the 
other hand, cement content has the lowest SHAP value, meaning that it has relatively less 
influence on predicting fc.

The SHAP summary for the prediction of fc by ANN in dry, wet and all conditions is 
shown in Figure 10(a-c) respectively. The x-axis shows the SHAP value, which indicates how 
much the feature influences the predicted result, and the colour illustrates the range of feature 
values. UPV has a high positive SHAP value of 0.6 in dry conditions, meaning that fc could be 
0.6 MPa higher than the average for higher UPV values. Conversely, UPV has a low negative 
SHAP value of −0.6, which means that fc could be 0.6 MPa lower than the average for lower 

Figure 9. Mean SHAP values using the ANN model.
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UPV values. The result of the SHAP value confirms the feature importance analysis in 
Figure 10, which uses the mean SHAP value. Cement content has the least influence on 
fc prediction between UPV and ER. The red dot represents a high feature value. It shows that 
higher fc values were observed for higher cement content, UPV and ER. The SHAP analysis 
shows that using the game theory technique to calculate SHAP could improve the 

Figure 10. SHAP summary for fc using ANN.
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understanding of the proposed ML techniques and demonstrate that the accuracy of the 
model’s prediction is acceptable.

Comparison of the model with published literature

Figure 11 shows a comparison of predicted and measured compressive strength 
between the present study and Equation (1), (3), (4) and (5) proposed in the 
published literature [5,19]. It is worth noting that the use of UPV or ER to predict 
the compressive strength of CSEBs is rarely found in the published literature. 
Sathiparan et al. [5] used the same data set and proposed the empirical equation 
for predicting the compressive strength of CSEBs in air-dry and wet conditions 
using UPV and ER. Kasinikota and Tripura [19] used UPV to predict the com-
pressive strength of CSEBs in air-dry, oven-dry and wet conditions. The UPV and 
compressive strength are varied in the range of 0.95–2.14 km/s and 0.73–6.74 MPa, 
respectively. The equations proposed by both published literatures showed less 
accuracy compared to the ML model using BDT. The predicted values by the 
equations proposed by Sathiparan et al. [5] were closer to the measured values, 
R2 = 0.88 and RMSE = 0.67 MPa. The predicted values by equations proposed by 
Kasinikota and Tripura [6] were mostly overestimated and less close to the 

Figure 11. Comparison of performance of ML models and proposed equations by published literature 
[5,19].
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measured value as R2 = 0.81 and RMSE = 1.30 MPa. It was shown that the ML 
model can predict the compressive strength more accurately compared to the 
empirical equations.

Practical implementation

As masonry, and especially earth masonry, loses strength over time, appropriate 
care is required to maintain it in good condition. To achieve this, important 
factors need to be taken into account when selecting a method and materials for 
repairing the structure. Prior to repair, a number of tests need to be carried out to 
provide up to date information on the condition of the structure, the compressive 
strength of the CSEBs and other factors, without compromising serviceability. 
Non-destructive testing has been shown to be an effective way of obtaining vital 
details about the quality and uniformity of masonry work without causing damage. 
Masonry structures can be inspected and assessed using these non-destructive 
testing techniques without causing any damage to them. This allows masonry 
structures to be properly maintained and repaired, maintaining their structural 
integrity and safety. As a result, this work provides a methodical evaluation of the 
compressive strength prediction of CSEBs using non-destructive testing methods 
and machine learning techniques. This evaluation can help to expand the knowl-
edge and practical applications of this subject.

Conclusions

The framework for predicting the fc of CSEBs using NDT measurements and ML models 
is presented in the present study. 180 experimental specimens (90 data points each for 
dry and wet conditions) were taken to train and test the models. As basic ML predictors, 
LR, ANN, BTR, RFR, KNN and SVM were adapted and trained. The following conclu-
sions can be drawn from the results:

● The statistical analysis shows that the use of UPV can be a reliable test to determine 
the fc of CSEBs compared to ER.

● ANN, BTR and RFR performed better than other machine learning models tested in 
this study for predicting fc.

● Unlike cement content, the results of feature significance analysis using SHAP indicate 
that UPV and ER are the most important variables affecting the prediction of fc.

In conclusion, this study provides a comprehensive assessment of the fc of CSEBs, which 
could contribute to the existing knowledge and influence the practical application of this field. 
In addition, the performance of the machine learning model could be improved by adding 
more data. Therefore, it is necessary to maintain the extensive dataset for mixed parameters, 
non-destructive measurement and fc of CSEBs. With the help of accurately predicted model 
techniques, material scientists and designers could choose the best method to evaluate the 
field performance of CSEBs.
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Abbreviations used in this study

NDT Non-destructive testing

ANN Artificial neural network
BTR Boosted Tree Regression
CC Cement content
CSEB Cement stabilised earth block
ER Electrical resistivity
fc Compressive strength
LR Linear regression
KNN K-nearest Neighbors
MDD Maximum dry density
ML Machine learning
RFR Random forest regression
RMSE Root Mean Squared Error
R2 Coefficient of determination
SHAP SHapley Additive exPlanations
SVR Support Vector Regression
UPV Ultrasonic pulse velosity
W/C Water-to-cement

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Pratheeba Jeyananthan http://orcid.org/0000-0003-0476-3964

References

[1] Sundaralingam K, Peiris A, Anburuvel A, et al. Quarry dust as river sand replacement in 
cement masonry blocks: Effect on mechanical and durability characteristics. Mater. 
2022;21:101324. doi: 10.1016/j.mtla.2022.101324

[2] Sathiparan N, Subramaniam DN, Malsara KGN, et al. Thermal comfort analysis of 
fired-clay brick, cement-sand block and cement stabilized earth block masonry house 
models. Innov Infrastruct Solut. 2022;7(2):147. doi: 10.1007/s41062-022-00744-9

[3] Yogananth Y, Thanushan K, Sangeeth P, et al. Comparison of strength and durability 
properties between earth-cement blocks and cement–sand blocks. Innov Infrastruct Solut. 
2019;4(1):50. doi: 10.1007/s41062-019-0238-8

[4] Sathiparan N. Mesh type seismic retrofitting for masonry structures: critical issues and 
possible strategies. Eur J Environ Civ Eng. 2015;19(9):1136–1154. doi: 10.1080/19648189. 
2015.1005160

[5] Sathiparan N, Jayasundara WGBS, Samarakoon KSD, et al. Prediction of characteristics of 
cement stabilized earth blocks using non-destructive testing: Ultrasonic pulse velocity and 
electrical resistivity. Mater. 2023;29:101794. doi: 10.1016/j.mtla.2023.101794

[6] Lombillo I, Villegas L, Fodde E, et al. In situ mechanical investigation of rammed earth: 
Calibration of minor destructive testing. Constr Build Mater. 2014;51:451–460. doi:10.1016/ 
j.conbuildmat.2013.10.090

[7] Sathiparan N, Anjalee WAV, Kandage KKS. The scale effect on small-scale modelling of 
cement block masonry. Mater Struct. 2016;49(7):2935–2946. doi: 10.1617/s11527-015-0696- 
1

NONDESTRUCTIVE TESTING AND EVALUATION 21

https://doi.org/10.1016/j.mtla.2022.101324
https://doi.org/10.1007/s41062-022-00744-9
https://doi.org/10.1007/s41062-019-0238-8
https://doi.org/10.1080/19648189.2015.1005160
https://doi.org/10.1080/19648189.2015.1005160
https://doi.org/10.1016/j.mtla.2023.101794
https://doi.org/10.1016/j.conbuildmat.2013.10.090
https://doi.org/10.1016/j.conbuildmat.2013.10.090
https://doi.org/10.1617/s11527-015-0696-1
https://doi.org/10.1617/s11527-015-0696-1


[8] Gholizadeh S. A review of non-destructive testing methods of composite materials. Procedia 
Struct Integr. 2016;1:50–57. doi: 10.1016/j.prostr.2016.02.008

[9] Gaydecki P, Fernandes B, Quek S, et al. Inductive and magnetic field inspection systems for 
rebar visualization and corrosion estimation in reinforced and pre-stressed concrete. Case 
Stud NondestrTest Eval. 2007;22(4):255–298. doi: 10.1080/10589750701362616

[10] Fang Z, Qajar J, Safari K, et al. Application of Non-Destructive Test Results to Estimate 
Rock Mechanical Characteristics— a Case Study. Miner. 2023;13(4):472. doi: 10.3390/ 
min13040472

[11] Liu L, Miramini S, Hajimohammadi A. Characterising fundamental properties of foam 
concrete with a non-destructive technique. Case Stud NondestrTest Eval. 2019;34(1):54–69. 
doi: 10.1080/10589759.2018.1525378

[12] Rashid K, Waqas R. Compressive strength evaluation by non-destructive techniques: An 
automated approach in construction industry. J Buil Eng. 2017;12:147–154. doi: 10.1016/j. 
jobe.2017.05.010

[13] Ivanchev I. Investigation with non-destructive and destructive methods for assessment of 
concrete compressive strength. Appl Sci. 2022;12(23):12172. doi: 10.3390/app122312172

[14] Saleh E, Tarawneh A, Dwairi H, et al. Guide to non-destructive concrete strength assess-
ment: Homogeneity tests and sampling plans. J Buil Eng. 2022;49:104047. doi: 10.1016/j. 
jobe.2022.104047

[15] Singh N, Singh SP. Evaluating the performance of self compacting concretes made with 
recycled coarse and fine aggregates using non destructive testing techniques. Constr Build 
Mater. 2018;181:73–84. doi: 10.1016/j.conbuildmat.2018.06.039

[16] Shakr Piro N, Mohammed A, Hamad SM, et al. Electrical resistivity-Compressive strength 
predictions for normal strength concrete with waste steel slag as a coarse aggregate replace-
ment using various analytical models. Constr Build Mater. 2022;327:127008. doi:10.1016/j. 
conbuildmat.2022.127008

[17] Yılmaz T, Ercikdi B. Predicting the uniaxial compressive strength of cemented paste backfill 
from ultrasonic pulse velocity test. Case Stud NondestrTest Eval. 2016;31(3):247–266. doi:  
10.1080/10589759.2015.1111891

[18] Jiang H, Han J, Li Y, et al. Relationship between ultrasonic pulse velocity and uniaxial 
compressive strength for cemented paste backfill with alkali-activated slag. Case Stud 
Nondestr Test Eval. 2020;35(4):359–377. doi: 10.1080/10589759.2019.1679140

[19] Kasinikota P, Tripura DD. Prediction of physical-mechanical properties of hollow inter-
locking compressed unstabilized and stabilized earth blocks at different moisture conditions 
using ultrasonic pulse velocity. J Buil Eng. 2022;48:103961. doi: 10.1016/j.jobe.2021.103961

[20] Ahmad A, Ahmad W, Aslam F, et al. Compressive strength prediction of fly ash-based 
geopolymer concrete via advanced machine learning techniques. Case Studies Construction 
Mater. 2022;16:e00840. doi: 10.1016/j.cscm.2021.e00840

[21] Zhang LV, Marani A, Nehdi ML. Chemistry-informed machine learning prediction of 
compressive strength for alkali-activated materials. Constr Build Mater. 2022;316:126103. 
doi: 10.1016/j.conbuildmat.2021.126103

[22] Wu J, Jing H, Yin Q, et al. Strength prediction model considering material, ultrasonic and 
stress of cemented waste rock backfill for recycling gangue. J Clean Prod. 2020;276:123189. 
doi:10.1016/j.jclepro.2020.123189

[23] Bilgehan M. A comparative study for the concrete compressive strength estimation using 
neural network and neuro-fuzzy modelling approaches. Case Stud NondestrTest Eval. 
2011;26(1):35–55. doi: 10.1080/10589751003770100

[24] Vidya Sagar R, Dutta M. Combined usage of acoustic emission technique and ultrasonic 
pulse velocity test to study crack classification in reinforced concrete structures. Case Stud 
NondestrTest Eval. 2021;36(1):62–96. doi: 10.1080/10589759.2019.1692013

[25] Asteris PG, Lourenço PB, Hajihassani M, et al. Soft computing-based models for the 
prediction of masonry compressive strength. Eng Struct. 2021;248:113276. doi: 10.1016/j. 
engstruct.2021.113276

22 N. SATHIPARAN AND P. JEYANANTHAN

https://doi.org/10.1016/j.prostr.2016.02.008
https://doi.org/10.1080/10589750701362616
https://doi.org/10.3390/min13040472
https://doi.org/10.3390/min13040472
https://doi.org/10.1080/10589759.2018.1525378
https://doi.org/10.1016/j.jobe.2017.05.010
https://doi.org/10.1016/j.jobe.2017.05.010
https://doi.org/10.3390/app122312172
https://doi.org/10.1016/j.jobe.2022.104047
https://doi.org/10.1016/j.jobe.2022.104047
https://doi.org/10.1016/j.conbuildmat.2018.06.039
https://doi.org/10.1016/j.conbuildmat.2022.127008
https://doi.org/10.1016/j.conbuildmat.2022.127008
https://doi.org/10.1080/10589759.2015.1111891
https://doi.org/10.1080/10589759.2015.1111891
https://doi.org/10.1080/10589759.2019.1679140
https://doi.org/10.1016/j.jobe.2021.103961
https://doi.org/10.1016/j.cscm.2021.e00840
https://doi.org/10.1016/j.conbuildmat.2021.126103
https://doi.org/10.1016/j.jclepro.2020.123189
https://doi.org/10.1080/10589751003770100
https://doi.org/10.1080/10589759.2019.1692013
https://doi.org/10.1016/j.engstruct.2021.113276
https://doi.org/10.1016/j.engstruct.2021.113276


[26] Sharafati A, Haji Seyed Asadollah SB, Al-Ansari N. Application of bagging ensemble model 
for predicting compressive strength of hollow concrete masonry prism. Ain Shams Eng J. 
2021;12(4):3521–3530. doi: 10.1016/j.asej.2021.03.028

[27] Lan G, Wang Y, Zeng G, et al. Compressive strength of earth block masonry: Estimation 
based on neural networks and adaptive network-based fuzzy inference system. Compos 
Struct. 2020;235:111731. doi:10.1016/j.compstruct.2019.111731

[28] Ren Q, Wang G, Li M, et al. Prediction of rock compressive strength using machine learning 
algorithms based on spectrum analysis of geological hammer. Geotech Geol Eng. 2019;37 
(1):475–489. doi: 10.1007/s10706-018-0624-6

[29] Aboutaleb S, Behnia M, Bagherpour R, et al. Using non-destructive tests for estimating 
uniaxial compressive strength and static Young’s modulus of carbonate rocks via some 
modeling techniques. Bull Eng Geol Environ. 2018;77(4):1717–1728. doi: 10.1007/s10064- 
017-1043-2

[30] Asteris PG, Skentou AD, Bardhan A, et al. Soft computing techniques for the prediction of 
concrete compressive strength using Non-Destructive tests. Constr Build Mater. 
2021;303:124450. doi: 10.1016/j.conbuildmat.2021.124450

[31] Khashman A, Akpinar P. Non-destructive prediction of concrete compressive strength 
using neural networks. Procedia Comput Sci. 2017;108:2358–2362. doi: 10.1016/j.procs. 
2017.05.039

[32] El-Mir A, El-Zahab S, Sbartaï ZM, et al. Machine learning prediction of concrete compres-
sive strength using rebound hammer test. J Buil Eng. 2023;64:105538. doi: 10.1016/j.jobe. 
2022.105538

[33] Li D, Tang Z, Kang Q, et al. Machine learning-based method for predicting compressive 
strength of concrete. Processes. 2023;11(2):390. doi: 10.3390/pr11020390

[34] Xin Z, Ke D, Zhang H, et al. Non-destructive evaluating the density and mechanical 
properties of ancient timber members based on machine learning approach. Constr Build 
Mater. 2022;341:127855. doi:10.1016/j.conbuildmat.2022.127855

[35] Sathiparan N, Jaasim JHM, Banujan B. Sustainable production of cement masonry blocks 
with the combined use of fly ash and quarry waste. Mater. 2022;26:101621. doi: 10.1016/j. 
mtla.2022.101621

[36] Poorveekan K, Ath KMS, Anburuvel A, et al. Investigation of the engineering properties of 
cementless stabilized earth blocks with alkali-activated eggshell and rice husk ash as a 
binder. Constr Build Mater. 2021;277:122371. doi: 10.1016/j.conbuildmat.2021.122371

[37] ASTM-C597. Standard test method for pulse velocity through concrete. West 
Conshohocken, PA: ASTM International; 2010.

[38] Carrasco EVM, Silva SR, Mantilla JNR. Assessment of mechanical properties and the 
influence of the addition of sawdust in soil–cement bricks using the technique of ultrasonic 
anisotropic inspection. J Mater Civ Eng. 2014;26(2):219–225. doi: 10.1061/(ASCE)MT. 
1943-5533.0000723

[39] ASTM-C1876. Standard test method for bulk electrical resistivity or bulk conductivity of 
concrete. West Conshohocken, PA: ASTM International; 2012.

[40] Subramaniam DN, Jeyananthan P, Sathiparan N. Soft computing techniques to predict the 
electrical resistivity of pervious concrete. Asian J Civ Eng. 2023; doi: 10.1007/s42107-023- 
00806-y

[41] ASTM-C109. Standard test method for compressive strength of hydraulic cement mortars 
(using 2-in. or [50 mm] cube specimens). West Conshohocken, PA: ASTM International; 
2020.

[42] Ahmed HU, Mohammed AA, Mohammed A, et al. Soft computing models to predict the 
compressive strength of GGBS/FA- geopolymer concrete. Plos One. 2022;17(5):e0265846. 
doi: 10.1371/journal.pone.0265846

[43] Jeyananthan P. Role of different types of RNA molecules in the severity prediction of 
SARS-CoV-2 patients. Pathol Res Pract. 2023;242:154311. doi: 10.1016/j.prp.2023.154311

[44] Jeyananthan P. SARS-CoV-2 diagnosis using transcriptome data: A machine learning 
approach. SN Comput Sci. 2023;4(3):218. doi: 10.1007/s42979-023-01703-6

NONDESTRUCTIVE TESTING AND EVALUATION 23

https://doi.org/10.1016/j.asej.2021.03.028
https://doi.org/10.1016/j.compstruct.2019.111731
https://doi.org/10.1007/s10706-018-0624-6
https://doi.org/10.1007/s10064-017-1043-2
https://doi.org/10.1007/s10064-017-1043-2
https://doi.org/10.1016/j.conbuildmat.2021.124450
https://doi.org/10.1016/j.procs.2017.05.039
https://doi.org/10.1016/j.procs.2017.05.039
https://doi.org/10.1016/j.jobe.2022.105538
https://doi.org/10.1016/j.jobe.2022.105538
https://doi.org/10.3390/pr11020390
https://doi.org/10.1016/j.conbuildmat.2022.127855
https://doi.org/10.1016/j.mtla.2022.101621
https://doi.org/10.1016/j.mtla.2022.101621
https://doi.org/10.1016/j.conbuildmat.2021.122371
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000723
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000723
https://doi.org/10.1007/s42107-023-00806-y
https://doi.org/10.1007/s42107-023-00806-y
https://doi.org/10.1371/journal.pone.0265846
https://doi.org/10.1016/j.prp.2023.154311
https://doi.org/10.1007/s42979-023-01703-6


[45] Lek S, Park YS. Artificial neural networks. In: Jørgensen SE Fath BD, editors. Encyclopedia 
of Ecology. Oxford: Elsevier; 2008. pp. 237–245. doi: 10.1016/B978-008045405-4.00173-7.

[46] Jeyananthan P. Prolonged viral shedding prediction on non-hospitalized, uncomplicated 
SARS-CoV-2 patients using their transcriptome data, computer methods and programs in 
biomedicine update. Comput Methods Programs Biomed. 2022;2:100070. doi: 10.1016/j. 
cmpbup.2022.100070

[47] Sathiparan N, Jeyananthan P, Subramaniam DN. Effect of aggregate size, aggregate to 
cement ratio and compaction energy on ultrasonic pulse velocity of pervious concrete: 
prediction by an analytical model and machine learning techniques. Asian J Civ Eng. 2023; 
doi: 10.1007/s42107-023-00790-3

[48] Lin P, Ding F, Hu G, et al. Machine learning-enabled estimation of crosswind load effect on 
tall buildings. J Wind Eng Ind Aerodyn. 2022;220:104860. doi:10.1016/j.jweia.2021.104860

[49] Sathiparan N, Jeyananthan P. Prediction of masonry prism strength using machine learning 
technique: Effect of dimension and strength parameters. Mater Today Commun. 
2023;35:106282. doi: 10.1016/j.mtcomm.2023.106282

[50] Guillen MD, Aparicio J, Esteve M. Gradient tree boosting and the estimation of production 
frontiers. Expert Syst Appl. 2023;214:119134. doi: 10.1016/j.eswa.2022.119134

[51] Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 
2008;77(4):802–813. doi: 10.1111/j.1365-2656.2008.01390.x

[52] Hu L, Wang H, Qian H, et al. Centrifuge-less dispersive liquid-liquid microextraction base 
on the solidification of switchable solvent for rapid on-site extraction of four pyrethroid 
insecticides in water samples. J Chromatogr A. 2016;1472:1–9. doi: 10.1016/j.chroma.2016. 
10.013

[53] Chanal D, Yousfi Steiner N, Petrone R, et al. Online diagnosis of PEM fuel cell by fuzzy 
C-means clustering. In: Cabeza LF, editor Encyclopedia of Energy Storage. Oxford: Elsevier; 
2022. pp. 359–393.

[54] Song Y, Kong X, Zhang C. A large-scale-nearest neighbor classification algorithm based on 
neighbor relationship preservation. Wireless Commun Mobile Comput. 
2022;2022:7409171. doi: 10.1155/2022/7409171

[55] Saini I, Singh D, Khosla A. QRS detection using K-Nearest Neighbor algorithm (KNN) and 
evaluation on standard ECG databases. J Adv Res. 2013;4(4):331–344. doi: 10.1016/j.jare. 
2012.05.007

[56] Xia Y. Chapter eleven - correlation and association analyses in microbiome study integrat-
ing multiomics in health and disease. In: Sun J, editor. Progress in Molecular Biology and 
Translational Science, Academic Press. 2020. pp. 309–491. 10.1016/bs.pmbts.2020.04.003

[57] Chen Y-P-P, Ivanova EP, Wang F, et al. 9.15 - Bioinformatics. In: Liu H-W Mander L, 
editors. Comprehensive Natural Products II. Oxford: Elsevier; 2010. pp. 569–593. doi: 10. 
1016/B978-008045382-8.00729-2.

[58] Sun W, Chang C, Long Q, Bayesian non-linear support vector machine for 
high-dimensional data with incorporation of graph information on features, Proc IEEE 
Int Conf Big Data 2019; Los Angeles, CA; 2019. p. 4874–4882.

[59] An W, Liang M. Fuzzy support vector machine based on within-class scatter for classifica-
tion problems with outliers or noises. Neuro comput. 2013;110:101–110. doi: 10.1016/j. 
neucom.2012.11.023

[60] Ndagi A, Umar AA, Hejazi F, et al. Non-destructive assessment of concrete deterioration by 
ultrasonic pulse velocity: A review. IOP Conference Series: Earth And Environ Sci. 2019;357 
(1):012015. doi: 10.1088/1755-1315/357/1/012015

[61] Sathiparan N, Anburuvel A, Maduwanthi KAPN, et al. Effect of moisture condition on 
cement masonry blocks with different fine aggregates: river sand, lateritic soil and manu-
factured sand. Sādhanā. 2022;47(4):270. doi: 10.1007/s12046-022-02054-3

[62] Zhou M, Wang J, Cai L, et al. Laboratory investigations on factors affecting soil electrical 
resistivity and the measurement. IEEE Trans Sustain Energy. 2015;51(6):5358–5365. doi: 10. 
1109/TIA.2015.2465931

24 N. SATHIPARAN AND P. JEYANANTHAN

https://doi.org/10.1016/B978-008045405-4.00173-7
https://doi.org/10.1016/j.cmpbup.2022.100070
https://doi.org/10.1016/j.cmpbup.2022.100070
https://doi.org/10.1007/s42107-023-00790-3
https://doi.org/10.1016/j.jweia.2021.104860
https://doi.org/10.1016/j.mtcomm.2023.106282
https://doi.org/10.1016/j.eswa.2022.119134
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1016/j.chroma.2016.10.013
https://doi.org/10.1016/j.chroma.2016.10.013
https://doi.org/10.1155/2022/7409171
https://doi.org/10.1016/j.jare.2012.05.007
https://doi.org/10.1016/j.jare.2012.05.007
https://doi.org/10.1016/bs.pmbts.2020.04.003
https://doi.org/10.1016/B978-008045382-8.00729-2
https://doi.org/10.1016/B978-008045382-8.00729-2
https://doi.org/10.1016/j.neucom.2012.11.023
https://doi.org/10.1016/j.neucom.2012.11.023
https://doi.org/10.1088/1755-1315/357/1/012015
https://doi.org/10.1007/s12046-022-02054-3
https://doi.org/10.1109/TIA.2015.2465931
https://doi.org/10.1109/TIA.2015.2465931


[63] Cao Z, Xiang L, Peng E, et al. Experimental Study on Electrical Resistivity of 
Cement-Stabilized Lead-Contaminated Soils. Adv Civ Eng 2018. 2018;2018:1–11. doi: 10. 
1155/2018/4628784

[64] Kibria G, Hossain MS. Investigation of geotechnical parameters affecting electrical resistiv-
ity of compacted clays. J Geotech Geoenviron Eng. 2012;138(12):1520–1529. doi: 10.1061/ 
(ASCE)GT.1943-5606.0000722

[65] Shah SFA, Chen B, Zahid M, et al. Compressive strength prediction of one-part alkali 
activated material enabled by interpretable machine learning. Constr Build Mater. 
2022;360:129534. doi: 10.1016/j.conbuildmat.2022.129534

[66] Zhang J, Niu W, Yang Y, et al. Machine learning prediction models for compressive strength 
of calcined sludge-cement composites. Constr Build Mater. 2022;346:128442. doi:10.1016/j. 
conbuildmat.2022.128442

[67] Quan Tran V, Quoc Dang V, Si Ho L. Evaluating compressive strength of concrete made 
with recycled concrete aggregates using machine learning approach. Constr Build Mater. 
2022;323:126578. doi: 10.1016/j.conbuildmat.2022.126578

NONDESTRUCTIVE TESTING AND EVALUATION 25

https://doi.org/10.1155/2018/4628784
https://doi.org/10.1155/2018/4628784
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000722
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000722
https://doi.org/10.1016/j.conbuildmat.2022.129534
https://doi.org/10.1016/j.conbuildmat.2022.128442
https://doi.org/10.1016/j.conbuildmat.2022.128442
https://doi.org/10.1016/j.conbuildmat.2022.126578

	Abstract
	Introduction
	Experimental program
	Materials used
	Mix design
	Testing
	Ultrasonic pulse velocity
	Electric resistivity
	Compression test


	Machine learning modelling
	ML modelling flow
	Machine learning technique
	Linear Regression (LR)
	Artificial Neural Network (ANN)
	Random Forest Regression (RFR)
	Boosted Tree Regression (BTR)
	K-nearest Neighbors (KNN)
	Support vector machines

	Performance indicator
	Cross-validation

	Experimental results
	Statical analysis
	Performance of machine learning models
	Sensitive analysis
	Comparison of the model with published literature
	Practical implementation
	Conclusions
	Abbreviations used in this study
	Disclosure statement
	ORCID
	References

