Please use this identifier to cite or link to this item: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/10003
Title: Rectified Classifier Chains for Prediction of Antibiotic Resistance from Multi-Labelled Data with Missing Labels
Authors: Mukunthan, T.
Brian, G.
Roberto La, R.
Anil, F.
Keywords: Multi-label classification;Classifier chain,;Multi-drug AMR;Missing labels;Semi-supervised model;Feature selection
Issue Date: 2023
Publisher: IEEE
Abstract: PredictingAntimicrobialResistance(AMR)fromgenomicdatahasimportantimplicationsforhumanandanimalhealthcare, andespeciallygivenitspotentialformorerapiddiagnosticsandinformedtreatmentchoices.Withtherecentadvancesinsequencing technologies,applyingmachinelearningtechniquesforAMRpredictionhaveindicatedpromisingresults.Despitethis,thereare shortcomingsintheliteratureconcerningmethodologiessuitableformulti-drugAMRpredictionandespeciallywheresampleswith missinglabelsexist.Toaddressthisshortcoming,weintroduceaRectifiedClassifierChain(RCC)methodforpredictingmulti-drug resistance.ThisRCCmethodwastestedusingannotatedfeaturesofgenomicssequencesandcomparedwithsimilarmulti-label classificationmethodologies.WefoundthatapplyingtheeXtremeGradientBoosting(XGBoost)basemodeltoourRCCmodel outperformedthesecond-bestmodel,XGBoostbasedbinaryrelevancemodel,by3.3%inHammingaccuracyand7.8%inF1-score. Additionally,wenotethatintheliteraturemachinelearningmodelsappliedtoAMRpredictiontypicallyareunsuitableforidentifying biomarkersinformativeoftheirdecisions;inthisstudy,weshowthatbiomarkerscontributingtoAMRpredictioncanalsobeidentified usingtheproposedRCCmethod.Weexpectthiscanfacilitategenomeannotationandpavethepathtowardsidentifyingnew biomarkersindicativeofAMR.
URI: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/10003
Appears in Collections:Electrical & Electronic Engineering



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.