Please use this identifier to cite or link to this item:
http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/10004
Title: | Trans AMR: An Interpretable Transformer Model for Accurate Prediction of Antimicrobial Resistance using Antibiotic Administration Data |
Authors: | Mukunthan, T. Wenwu, W. Michael, K. Roberto Lo, R. Anil, F. |
Keywords: | Transformer;Multi-drug AMR;Antimicrobial stewardship;Missing labels;XAI;Multi-label prediction |
Issue Date: | 2023 |
Publisher: | IEEE |
Abstract: | AntimicrobialResistance(AMR)isagrowingpublicandveterinaryhealthconcern,andthe abilitytoaccuratelypredictAMRfromantibioticsadministrationdataiscrucialforeffectivelytreatingand managinginfections.Whilegenomics-basedapproachescanprovidebetterresults,sequencing,assembling, andapplyingMachineLearning(ML)methodscantakeseveralhours.Therefore,alternativeapproachesare required.ThisstudyfocusedonusingMLforantimicrobialstewardshipbyutilisingdataextractedfrom hospitalelectronichealthrecords,whichcanbedoneinreal-time,anddevelopinganinterpretable1DTransformermodelforpredictingAMR.Amulti-baselineIntegratedGradientpipelinewasalsoincorporated tointerpretthemodel,andquantitativevalidationmetricswereintroducedtovalidatethemodel.The performanceoftheproposed1D-Transformermodelwasevaluatedusingadatasetofurinarytractinfection (UTI)patientswithfourantibiotics.Theproposed1D-Transformermodelachieved10%higherareaunder curve(AUC)inpredictingAMRandoutperformedtraditionalMLmodels.TheExplainableArtificial Intelligence(XAI)pipelinealsoprovidedinterpretableresults,identifyingthesignaturescontributingto thepredictions.Thiscouldbeusedasadecisionsupporttoolforpersonalisedtreatment,introducing AMR-awarefoodandmanagementofAMR,anditcouldalsobeusedtoidentifysignaturesfortargeted interventions. |
URI: | http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/10004 |
Appears in Collections: | Electrical & Electronic Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TransAMR_An_Interpretable_Transformer_Model_for_Accurate_Prediction_of_Antimicrobial_Resistance_Using_Antibiotic_Administration_Data.pdf | 1.56 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.