Please use this identifier to cite or link to this item:
http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/10015
Title: | Explainable Deep Learning Approach for Multi label Classification of Antimicrobial Resistance with Missing Labels |
Authors: | Mukunthan, T. Brian, G. Roberto La, R. Anil, F. |
Keywords: | Multi label classification;Deep neural network;Multi-drug AMR;Missing labels;Explainable AI |
Issue Date: | 2022 |
Publisher: | IEEE |
Abstract: | PredictingAntimicrobialResistance(AMR)fromgenomicsequencedatahasbecomea significantcomponentofovercomingtheAMRchallenge,especiallygivenitspotentialforfacilitatingmore rapiddiagnosticsandpersonalisedantibiotictreatments.Withtherecentadvancesinsequencingtechnologies andcomputingpower,deeplearningmodelsforgenomicsequencedatahavebeenwidelyadoptedtopredict AMRmorereliablyanderror-free.TherearemanydifferenttypesofAMR;therefore,anypracticalAMR predictionsystemmustbeabletoidentifymultipleAMRspresentinagenomicsequence.Unfortunately, mostgenomicsequencedatasetsdonothaveallthelabelsmarked,therebymakingadeeplearningmodelling approachchallengingowingtoitsrelianceonlabelsforreliabilityandaccuracy.Thispaperaddresses thisissuebypresentinganeffectivedeeplearningsolution,Mask-Loss1Dconvolutionneuralnetwork (ML-ConvNet),forAMRpredictionondatasetswithmanymissinglabels.Thecorecomponentof ML-ConvNetutilisesamaskedlossfunctionthatovercomestheeffectofmissinglabelsinpredicting AMR.TheproposedML-ConvNetisdemonstratedtooutperformstate-of-the-artmethodsintheliteratureby 10.5%,accordingtotheF1score.Theproposedmodel’sperformanceisevaluatedusingdifferentdegrees ofthemissinglabelandisfoundtooutperformtheconventionalapproachby76%intheF1scorewhen 86.68%oflabelsaremissing.Furthermore,theML-ConvNetwasestablishedwithanexplainableartificial intelligence(XAI)pipeline,therebymakingitideallysuitedforhospitalandhealthcaresettings,wheremodel interpretabilityisanessentialrequirement. |
URI: | http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/10015 |
Appears in Collections: | Electrical & Electronic Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Explainable_Deep_Learning_Approach_for_Multilabel_Classification_of_Antimicrobial_Resistance_With_Missing_Labels.pdf | 7.39 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.