Civil Engineering : [289] Collection home page

Browse
Subscribe to this collection to receive daily e-mail notification of new additions RSS Feed RSS Feed RSS Feed
Collection's Items (Sorted by Submit Date in Descending order): 41 to 60 of 289
Issue DateTitleAuthor(s)
2023Effect of aggregate size, aggregate to cement ratio and compaction energy on ultrasonic pulse velocity of pervious concrete: prediction by an analytical model and machine learning techniquesSathiparan, N.; Pratheeba, J.; Daniel Niruban, S.
2023A mathematical model to predict the porosity and compressive strength of pervious concrete based on the aggregate size, aggregate‑to‑cement ratio and compaction effortSathushka Heshan, W.; Thirugnasivam, S.; Daniel Niruban, S.; Sathiparan, N.
2023Characterization of the shape of aggregates using image analysis and machine learning classification toolsDaniel Niruban, S.; Sajeevan, M.; Pratheeba, J.; Sathushka Heshan, B.W.; Sathiparan, N.
2023Investigation of Compaction on Compressive Strength and Porosity of Pervious ConcreteSajeevan, M.; Daniel Niruban, S.; Rinduja, R.; Pratheeba, J.
2023Prediction of compressive strength of fly ash blended pervious concrete: a machine learning approachSathiparan, N.; Pratheeba, J.; Daniel Niruban, S.
2023Surface response regression and machine learning techniques to predict the characteristics of pervious concrete using non-destructive measurement: Ultrasonic pulse velocity and electrical resistivitySathiparan, N.; Pratheeba, J.; Daniel Niruban, S.
2023Predicting compressive strength of cementstabilized earth blocks using machine learning models incorporating cement content, ultrasonic pulse velocity, and electrical resistivitySathiparan, N.; Pratheeba, J.
2023Soft computing techniques to predict the compressive strength of groundnut shell ash-blended concreteSathiparan, N.; Pratheeba, J.
2023Prediction of masonry prism strength using machine learning technique: Effect of dimension and strength parametersSathiparan, N.; Pratheeba, J.
2023Use of soft computing approaches for the prediction of compressive strength in concrete blends with eggshell powderSathiparan, N.; Pratheeba, J.
2023Protein data in the identification and stage prediction of bronchopulmonary dysplasia on preterm infants: a machine learning studyPratheeba, J.; Bandara, K.M.D.D.; Nayanqjith, Y.G.A.
2023SARS-CoV-2 Diagnosis Using Transcriptome Data: A Machine Learning ApproachPratheeba, J.
2023Role of Different types of RNA molecules in the severity prediction of SARS-CoV - 2 patients.Pratheeba, J.
2022Prolonged viral shedding prediction on non-hospitalized, uncomplicated SARS-CoV-2 patients using their transcriptome dataPratheeba, J.
2022Feasibility of Waste Calicut Tiles as Aggregates in Structural ConcreteJayasekara, D.A.B.P.M.; Jayathilaka, S.T.N.; Somarathna, H.M.C.C
2022Flexural Behaviour of Waste-based Natural Fibre Reinforced Composite from Palmyra Fibre and Waste PolytheneWijesena, P.C.M.; Karunarathna, D.M.S.M.; Somarathna, H.M.C.C
2022Feasibility of Cement Mortar System with Industrial Metal Fibre WastePerera, K.D.Y.G.; Ahamed, Y. L. F.; Somarathna, H.M.C.C
2022Comparative Study of the Wind Codes: An Application to Forty-Six Storied Wall-Frame StructureKiriparan, B.; Jayasinghe, J.A.S.C.; Dissanayake, U.I.
2022Iron removal from groundwater using granular activated carbon filters by oxidation coupled with the adsorption processThinojah, T.; Ketheesan, B.
2022Community-based water governance for adaptation to water reduction and scarcity in Badulla district of Sri LankaDaluwatte, D.D.S.; Sivakumar, S.
Collection's Items (Sorted by Submit Date in Descending order): 41 to 60 of 289