Please use this identifier to cite or link to this item: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/1914
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNishanth, A.
dc.contributor.authorThiruvaran, T.
dc.date.accessioned2021-03-16T05:20:31Z
dc.date.accessioned2022-06-27T10:02:33Z-
dc.date.available2021-03-16T05:20:31Z
dc.date.available2022-06-27T10:02:33Z-
dc.date.issued2017
dc.identifier.citationNishanth, A., & Thiruvaran, T. (2017). Identifying important attributes for early detection of Chronic Kidney Disease. IEEE reviews in biomedical engineering, 11, 208-216.en_US
dc.identifier.urihttp://repo.lib.jfn.ac.lk/ujrr/handle/123456789/1914-
dc.description.abstractIndividuals with chronic kidney disease (CKD) are often not aware that the medical tests they take for other purposes may contain useful information about CKD, and that this information is sometimes not used effectively to tackle the identification of the disease. Therefore, attributes of different medical tests are investigated to identify which attributes may contain useful information about CKD. A database with several attributes of healthy subjects and subjects with CKD are analyzed using different techniques. Common spatial pattern (CSP) filter and linear discriminant analysis are first used to identify the dominant attributes that could contribute in detecting CKD. Here, the CSP filter is applied to optimize a separation between CKD and non- CKD subjects. Then, classification methods are also used to identify the dominant attributes. These analyses suggest that hemoglobin, albumin, specific gravity, hypertension, and diabetes mellitus, together with serum creatinine, are the most important attributes in the early detection of CKD. Further, it suggests that in the absence of information on hypertension and diabetes mellitus, random blood glucose and blood pressure attributes may be used.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectChronic kidney diseaseen_US
dc.subjectspatial patternen_US
dc.titleIdentifying Important Attributes for Early Detection of Chronic Kidney Diseaseen_US
dc.typeArticleen_US
Appears in Collections:Electrical & Electronic Engineering

Files in This Item:
File Description SizeFormat 
Identifying Important Attributes for Early.pdf130.11 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.