Please use this identifier to cite or link to this item: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/227
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKannan, K
dc.date.accessioned2014-02-02T09:23:35Z
dc.date.accessioned2022-06-28T06:46:01Z-
dc.date.available2014-02-02T09:23:35Z
dc.date.available2022-06-28T06:46:01Z-
dc.date.issued2003
dc.identifier.issn13118080
dc.identifier.urihttp://repo.lib.jfn.ac.lk/ujrr/handle/123456789/227-
dc.description.abstractLet G be a countable exact discrete group. We show that G has the approximation property if and only if C* u(G, S) G = Cλ(G) ⊗ S for any Hilbert space H and closed subspace S ⊆ H, we have where C* u(G) is the uniform Roe algebra. This answers a question of J. Zacharias.en_US
dc.language.isoenen_US
dc.publisherAcademic Publications, Ltden_US
dc.subjectInvariant approximation propertyen_US
dc.subjectStrong invariant approximation propertyen_US
dc.subjectUniform Roe algebrasen_US
dc.titleStrong invariant approximation property for discrete groupsen_US
dc.typeArticleen_US
Appears in Collections:Mathematics and Statistics

Files in This Item:
File Description SizeFormat 
Kannan-Strong invariant approximation property for discrete groups.pdf277.21 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.