Please use this identifier to cite or link to this item: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/250
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBarathy, Ganesharajah
dc.contributor.authorMahesan, Sinnathamby
dc.contributor.authorPinidiyaarachchi, U.A.J
dc.date.accessioned2014-02-05T18:39:16Z
dc.date.accessioned2022-06-28T04:51:41Z-
dc.date.available2014-02-05T18:39:16Z
dc.date.available2022-06-28T04:51:41Z-
dc.date.issued2011
dc.identifier.isbn978-145770035-4
dc.identifier.urihttp://repo.lib.jfn.ac.lk/ujrr/handle/123456789/250-
dc.description.abstractIn the state-of-the-art visual object recognition, there are a number of descriptors that have been proposed for various visual recognition tasks. But it is still difficult to decide which descriptors have more significant impact on this task. The descriptors should be distinctive and at the same time robust to changes in viewing conditions. This paper evaluates the performance of two distinctive feature descriptors, known as SIFT and extended-SURF (e-SURF) in the context of object class recognition. Local features are computed for 11 object classes from PASCAL VOC challenge 2007 dataset and clustered using K-means method. Support Vector Machines (SVM) is used in order to analyse the performance of the descriptors in recognition. By evaluating these two descriptors it can be concluded that e-SURF slightly perform better than SIFT descriptors.en_US
dc.description.sponsorshipUniversity of Peradeniya,Ceylon Electricity Board,Cisco Systems Inc,Lanka Transformers Limited Global Engineering Services (Pvt.) Ltd,Brandix Lanka Ltd.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectCodebook constructionen_US
dc.subjecte-SURen_US
dc.subjectFeature descriptorsen_US
dc.subjectFeature detectorsen_US
dc.subjectObject recognitionen_US
dc.subjectSIFTen_US
dc.titleRobust invariant descriptors for visual object recognitionen_US
dc.typeArticleen_US
Appears in Collections:Computer Science

Files in This Item:
File Description SizeFormat 
Ganesharajah-Robust invariant descriptors for visual object recognition.pdf176.4 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.