Please use this identifier to cite or link to this item: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/4301
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVarathan, N.
dc.contributor.authorWijekoon, P.
dc.date.accessioned2021-11-30T05:04:55Z
dc.date.accessioned2022-06-28T06:46:05Z-
dc.date.available2021-11-30T05:04:55Z
dc.date.available2022-06-28T06:46:05Z-
dc.date.issued2019
dc.identifier.urihttp://repo.lib.jfn.ac.lk/ujrr/handle/123456789/4301-
dc.description.abstractIt is well known that the use of prior information in the logistic regression improves the estimates of regression coefficients when multicollinearity presents. This prior information may be in the form of exact or stochastic linear restrictions. In this article, in the presence of stochastic linear restrictions, we propose a new efficient estimator, named Stochastic restricted optimal logistic estimator for the parameters in the logistic regression models when the multicollinearity presents. Further, conditions for the superiority of the new optimal estimator over some existing estimators are derived with respect to the mean square error matrix sense. Moreover, a Monte Carlo simulation study and a real data example are provided to illustrate the performance of the proposed optimal estimator in the scalar mean square error sense.en_US
dc.language.isoenen_US
dc.publisherUniversity of Jaffnaen_US
dc.subjectlogistic regressionen_US
dc.subjectmulticollinearityen_US
dc.subjectoptimal estimatoren_US
dc.subjectmean square erroren_US
dc.subjectScalar mean square erroren_US
dc.titleOptimal stochastic restricted logistic estimatoren_US
dc.typeArticleen_US
Appears in Collections:Mathematics and Statistics

Files in This Item:
File Description SizeFormat 
Optimal stochastic restricted logistic estimator.pdf774.82 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.