Please use this identifier to cite or link to this item: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/4834
Title: Automated gastrointestinal abnormalities detection from endoscopic images
Authors: Gowtham,P.
Niranjan,M.
Kaneswaran, A.
Keywords: Endoscopy;Gastrointestinal abnormalities;Transfer Learning
Issue Date: 2021
Publisher: 16th IEEE International Conference on Industrial and Information Systems (ICIIS) 2021
Abstract: Impressive high performance reported in the use of machine learning on computer vision problems is often due to the availability of very large datasets with which deep neural networks can be trained. With inference from medical images, however, this is not the case and available data is often only a small fraction in size in comparison to benchmark natural scene recognition problems. To circumvent this problem, transfer learning is often applied, where a model trained on a large natural image corpus is adapted, or pre-trained, to model the medical problem. In this work, we consider transfer learning applied to a specific medical diagnostics problem, that of abnormality detection in the gastrointestinal tract of a human body using images obtained during endoscopy. We carry out a search over several image recognition architectures and adapt pretrained models to the endoscopy problem. Using the benchmark KVASIR dataset, we show that transfer learning is effective in outperforming previously reported results, at an accuracy of 98.5±0.27.
URI: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/4834
Appears in Collections:Computer Engineering

Files in This Item:
File Description SizeFormat 
Automated gastrointestinal abntection from endoscopic images 1.pdf66.23 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.