Please use this identifier to cite or link to this item: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/5587
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSharika, W.
dc.contributor.authorFernando, L.
dc.contributor.authorKanagasundaram, A.
dc.contributor.authorValluvan, R.
dc.contributor.authorKaneswaran, A.
dc.date.accessioned2022-03-11T02:19:01Z
dc.date.accessioned2022-06-27T10:02:04Z-
dc.date.available2022-03-11T02:19:01Z
dc.date.available2022-06-27T10:02:04Z-
dc.date.issued2018
dc.identifier.urihttp://repo.lib.jfn.ac.lk/ujrr/handle/123456789/5587-
dc.description.abstractThe need of solar irradiation forecast at a specific location over long-time horizons has attained massive importance. In this paper, we study the machine learning techniques to predict solar irradiation in 10 min intervals using data sets from Killinochchi district, Faculty of Engineering, University of Jaffna measuring center. The accuracies of the prediction models such as ARIMA, Random Forest Regression, Neural Networks, Linear Regression and Supportive Vector Machine is compared. This study suggests that ARIMA performs well over other approaches.en_US
dc.language.isoenen_US
dc.publisherUniversity of Jaffnaen_US
dc.subjectSolar irradianceen_US
dc.subjectForecastingen_US
dc.subjectCorrelationen_US
dc.subjectExogenous inputsen_US
dc.subjectpredictionen_US
dc.subjectModelsen_US
dc.titleLong-term solar irradiance forecasting approaches a comparative studyen_US
dc.typeArticleen_US
Appears in Collections:Electrical & Electronic Engineering

Files in This Item:
File Description SizeFormat 
Long-term Solar Irradiance Forecasting Approaches – A Comparative Study.pdf267.7 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.