Please use this identifier to cite or link to this item: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/575
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArumairajan, S.
dc.contributor.authorWijekoon, P.
dc.date.accessioned2014-07-22T04:21:39Z
dc.date.accessioned2022-06-28T06:46:03Z-
dc.date.available2014-07-22T04:21:39Z
dc.date.available2022-06-28T06:46:03Z-
dc.date.issued2013-08-16
dc.identifier.urihttp://repo.lib.jfn.ac.lk/ujrr/handle/123456789/575-
dc.description.abstractRidge type estimators are used to estimate regression parameters in a multiple linear regression model when multicolinearity exists among predictor variables. When different estimators are available, preliminary test estimation procedure is adopted to select a suitable estimator. In this paper, two ridge estimators, the Stochastic Restricted Liu Estimator and Liu Estimator are combined to define a new preliminary test estimator, namely the Preliminary Test Stochastic Restricted Liu Estimator (PTSRLE). The stochastic properties of the proposed estimator are derived, and the performance of PTSRLE is compared with SRLE in the sense of mean square error matrix (MSEM) and scalar mean square error (SMSE) for the two cases in which the stochastic restrictions are correct and not correct. Moreover the SMSE of PTSRLE based on Wald (WA), Likelihood Ratio (LR) and Lagrangian Multiplier (LM) tests are derived, and the performance of PTSRLE is compared using WA, LR and LM tests as a function of the shrinkage parameter d with respect to the SMSE. Finally a numerical example is given to illustrate some of the theoretical findings.en_US
dc.language.isoenen_US
dc.publisherScientific Research Publishingen_US
dc.subjectPreliminary Test Estimatoren_US
dc.subjectMean Square Error Matrixen_US
dc.subjectScalar Mean Square Erroren_US
dc.subjectStochastic Restricted Liu Estimatoren_US
dc.subjectLiu Estimatoren_US
dc.subjectWald Testen_US
dc.subjectLikelihood Ratio Testen_US
dc.subjectLagrangian Multiplier Testen_US
dc.titleImprovement of the Preliminary Test Estimator When Stochastic Restrictions are Available in Linear Regression Modelen_US
dc.typeArticleen_US
Appears in Collections:Mathematics and Statistics



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.