Please use this identifier to cite or link to this item: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/9317
Title: Strong Invariant Approximation Property for Discrete Groups
Authors: Kannan, K.
Keywords: Strong invariant approximation property;Uniform Roe algebras;Invariant approximation property
Issue Date: 2013
Publisher: International Journal of Pure and Applied Mathematics
Abstract: Let G be a countable exact discrete group. We show that G has the approximation property if and only if C ∗ u (G, S) G = C ∗ λ (G) ⊗ S for any Hilbert space H and closed subspace S ⊆ H, we have where C ∗ u (G) is the uniform Roe algebra. This answers a question of J. Zacharias.
URI: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/9317
ISSN: 1311-8080 (printed version)
DOI: http://dx.doi.org/10.12732/ijpam.v85i6.11
Appears in Collections:Mathematics and Statistics

Files in This Item:
File Description SizeFormat 
Strong Invariant Approximation Property for Discrete Groups.pdf113.67 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.