Please use this identifier to cite or link to this item: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/9317
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKannan, K.-
dc.date.accessioned2023-04-17T04:47:49Z-
dc.date.available2023-04-17T04:47:49Z-
dc.date.issued2013-
dc.identifier.issn1311-8080 (printed version)-
dc.identifier.urihttp://repo.lib.jfn.ac.lk/ujrr/handle/123456789/9317-
dc.description.abstractLet G be a countable exact discrete group. We show that G has the approximation property if and only if C ∗ u (G, S) G = C ∗ λ (G) ⊗ S for any Hilbert space H and closed subspace S ⊆ H, we have where C ∗ u (G) is the uniform Roe algebra. This answers a question of J. Zacharias.en_US
dc.language.isoenen_US
dc.publisherInternational Journal of Pure and Applied Mathematicsen_US
dc.subjectStrong invariant approximation propertyen_US
dc.subjectUniform Roe algebrasen_US
dc.subjectInvariant approximation propertyen_US
dc.titleStrong Invariant Approximation Property for Discrete Groupsen_US
dc.typeArticleen_US
dc.identifier.doihttp://dx.doi.org/10.12732/ijpam.v85i6.11en_US
Appears in Collections:Mathematics and Statistics

Files in This Item:
File Description SizeFormat 
Strong Invariant Approximation Property for Discrete Groups.pdf113.67 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.