Please use this identifier to cite or link to this item:
http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/9317
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kannan, K. | - |
dc.date.accessioned | 2023-04-17T04:47:49Z | - |
dc.date.available | 2023-04-17T04:47:49Z | - |
dc.date.issued | 2013 | - |
dc.identifier.issn | 1311-8080 (printed version) | - |
dc.identifier.uri | http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/9317 | - |
dc.description.abstract | Let G be a countable exact discrete group. We show that G has the approximation property if and only if C ∗ u (G, S) G = C ∗ λ (G) ⊗ S for any Hilbert space H and closed subspace S ⊆ H, we have where C ∗ u (G) is the uniform Roe algebra. This answers a question of J. Zacharias. | en_US |
dc.language.iso | en | en_US |
dc.publisher | International Journal of Pure and Applied Mathematics | en_US |
dc.subject | Strong invariant approximation property | en_US |
dc.subject | Uniform Roe algebras | en_US |
dc.subject | Invariant approximation property | en_US |
dc.title | Strong Invariant Approximation Property for Discrete Groups | en_US |
dc.type | Article | en_US |
dc.identifier.doi | http://dx.doi.org/10.12732/ijpam.v85i6.11 | en_US |
Appears in Collections: | Mathematics and Statistics |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Strong Invariant Approximation Property for Discrete Groups.pdf | 113.67 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.